

RELATORIO TÉCNICO RT-GSTAR-002-2023

DISSM/CGCT/INPE

## RADIAÇÃO SOLAR NA REGIÃO GRANDE NORTE ARGENTINO:

Análise em Componentes Principais da série de médias mensais do GL 1.2 período 2006-2020

Juan Carlos Ceballos<sup>1</sup>, Simone Marilene Sievert da Costa<sup>1</sup> e Jorge Domingo Forciniti<sup>2</sup>

 (1) Divisão de Satélites e Sensores Meteorológicos – DISSM Coordenação Geral de Ciências da Terra – CGCT Instituto Nacional de Pesquisas Espaciais – INPE

(2) Sección Agrometeorología
 Estación Experimental Agroindustrial "Obispo Colombres"
 San Miguel de Tucumán, Argentina

Junho 2023

Como citar: Ceballos J.C., M.S.S. da Costa, J.D. Franciniti (2023). Solar Radiation Regimes within Extended North Argentine Region. Technical Report <u>GSTAR</u> RT-002-2023

# **Resumo**. RADIAÇÃO SOLAR NA REGIÃO GRANDE NORTE ARGENTINO: Análise em Componentes Principais da série de médias mensais do modelo GL 1.2 período 2006-2020

Uma região geográfica que inclui o Norte Argentino foi escolhida para realizar pesquisa e atividades de aplicação relativa às características da radiação solar. Esta Região Estendida do Norte Argentino (NAR, definida como a 46°W em longitude e 32°S a 19°S latirude latitude) abrange desde o Oceano Pacífico até o Atlântico. Esta região estendida permite uma melhor descrição e compreensão do clima da radiação solar, assim como aproveitar medições solarimétricas de redes do norte chileno, sul brasileiro e província de Tucumán (Argentina). Ainda, são aproveitados dados do modelo satelital GL versão 1.2, fornecendo irradiância média diária com resolução 0,04°. O conjunto das informações será criticamente analisado e organizado num Banco de Dados de Radiação.

Este primeiro Relatório de Pesquisa apresenta uma análise de regimes de radiação solar no NAR, baseada na série de médias mensais do modelo GL 1.2 para o período 2006-2020. Foi aplicada análise em componentes principais (ACP) dos dados mensais normalizados pela média e desvio padrão da série. O estudo centrou-se no regime do *índice de brilho* Kt (de fato, a transmitância do sistema nuvens-atmosfera), para melhor caracterizar comportamentos regionais e filtrar o sinal anual oscilante associado à declinação do Sol. As primeiras quatro CPs acumulam mais de 82% da variância do sistema. Observam-se dois regimes principais: a primeira CP1 tem forte correlação com a radiação no norte do Chile, Argentina central, Paraguai e sul do Brasil, enquanto a PC2 correlaciona-se com o sopé (lado oriental) das Serras Andinas e a região brasileira ao norte do Paraguai. As CP3 e CP4 sugerem resposta à dinâmica atmosférica regional envolvendo a interação costeira com o Atlântico e a circulação (topográfica) a leste dos Andes. A análise harmônica de Fourier (AH) das CPs permite separar um sinal anual forte de uma oscilação mais lenta talvez associada a fenômenos de larga escala como El Niño/La Niña e outros. As cargas fatoriais devem ter influência definida na fase e perfil do sinal anual assim como na intensidade das flutuações de longo prazo; o tema será objeto de análise posterior. Não mais que 10 arquivos de cargas fatorias (em alta resolução) e dois arquivos adicionais (irradiância média e desvio padrão da série) permitem descrição espaco-temporal da irradiância média mensal acumulando 92% da variância (ou desvio quadrático médio de cerca de 11 Wm<sup>2</sup>). Estes arquivos representam em torno de 7% dos 180 originais mensais no período 2006-2020.

# Abstract. SOLAR RADIATION ON ARGENTINE EXTENDED NORTH REGION: Principal Components Analysis of monthly means series of model GL 1.2, period 2006-2020.

A geographical region including Northern Argentina was chosen in order to perform research and applied activities about solar radiation characteristics. This Argentine Extended North Region (NAR) is defined as 72°W to 46°W in longitude and 32°S a 19°S in latitude, from Pacific to Atlantic oceans. On one hand, this extended area allows better understanding and description of regional behavior of solar radiation climate; on the other hand, it takes profit of measurements by a number of solarimetric data from networks over at least Northern Chile, Southern Brazil and Province of Tucumán (Argentina). In addition, the satellite-based model GL version 1.2 provides 0.04° resolution values of daily mean irradiance. The whole set of available data will be critically analyzed and organized in a Radiation Data Base system.

This first Research Report presents an analysis of solar radiation regimes over NAR, based on GL 1.2 monthly series 2006-2020. Principal Component Analysis (PCA) was applied to monthly data standardized by mean and standard deviation of time series. The analysis is focused on PCA of brightness index Kt (actually cloud-atmosphere transmittance), in order to better describe regional behaviors filtering the direct effect of top-of-atmosphere oscillation associated to Sun declination. First four PCs cumulate more than 82% of regional variance. Two main regimes are observed: first (stronger) PC1 dominates Northern Chile, Central Argentina, Paraguay and southern Brazil, while PC2 covers pedemonte most eastern side of Andean mountains and Brazilian region north from Paraguay. PC3 and PC4 seem a response to regional atmospheric dynamics involving (coastal) interactions with Atlantic Ocean and (topographic) circulation over East Andean region. Fourier harmonic analysis (HA) of PCs allows separation between a stronger annual signal and a long-term oscillation probably associated to large-scale phenomena as El Niño/La Niña and others. Local factor loadings must have definite influence on description and interpretation of local phase of annual signal as well as strength of long-term fluctuations; this will be subject of further analysis. A number of 10 factor loading files and two additional files (mean irradiance and standard deviation) allow time-space description of regional monthly irradiance with 92% of variance (mean square deviation of about 11 W m-2). These files represent about 7% of 180 original monthly files in 2006-2020 period.

### Sumário

# DIAGNÓSTICO DO REGIME DE RADIAÇÃO SOLAR NO NAR, BASEADO NO MODELO GL 1.2.

Autores: J.C. Ceballos, S.M.S. da Costa, J.D. Forciniti

### Introdução

- 1 Dados e métodos
- 1.1. Área de análise e período de dados
- 1.2. Acerca da comparação entre modelo e medições
- 1.3. Análise em Componentes Principais (ACP)
- 1.4. Análise Harmônica (Fourier)
- 2 Distribuição regional de valores médios de radiação
- 2.1. Exemplos de ajuste estre estimativas por satélite e medidas à superfície
- 3 ACP da série temporal
- 4 ACP aplicada ao índice Kt (transmitância atmosférica)
- 4.1. Periodicidades nas componentes principais
- 5 A construção de uma série temporal de GL
- 6 Clima da radiação solar global no NAR
- 6.1. Relação entre regimes de nebulosidade e sistemas meteorológicos
- 6.2. Análise em componentes principais da série de Kt
- 7 Considerações finais

Referências Bibliográficas

### Anexos

- A1. Irradiância média diária no topo da atmosfera.
- A2. Arquivos de componentes principais e valores médios em 2006-2020
- A3. Rede de locais na região R3.

# INTRODUÇÃO

Em 2022 deu-se início a ações de cooperação em estudos de radiação solar entre o <u>Grupo de</u> <u>Radiação Solar, Atmosférica e Terrestre</u> G-STAR (Coordenação Geral de Ciências da Terra, CGCT/INPE), a <u>Sección Agrometeorologia</u> da Estación Experimental Agroindustrial Obispo Colombres (EEAOC, Tucumán, Argentina) e o <u>Laboratorio de Física de la Atmósfera</u> (LAFIAT) da Facultad de Ciencias Exactas y Tecnologia, Universidad Nacional de Tucumán (FACET/UNT, Argentina). A EEAOC dispõe de uma rede operacional de 30 estações automáticas medindo radiação solar global na província de Tucumán (Argentina) e locais próximos dela, enquanto o LAFIAT vem colaborando em atividades de calibração de instrumentos. A interação com o G-STAR permite incorporar a comparação/validação de séries temporais de radiação solar estimadas pelo modelo GL operacional no INPE. Por sua vez, as características do modelo GL (abrangência da América do Sul, em alta resolução espacial) permitirão gerar monitoramento e caracterização climática da radiação solar numa região mais extensa que a província de Tucumán.

Como primeiro resultado, foram elaboradas comparações 2017-2021 da rede EEAOC com o modelo GL. Resultados foram apresentados no Congresso Argentino de Meteorologia em Buenos Aires (Forciniti et al. 2022a) e na Reunião da Asociação de Energia Solar em Catamarca (Forciniti et al. 2022b). Ainda, neste último Encontro foi apresentada uma aplicação do modelo GL para diagnóstico da série temporal de irradiância mensal no Noroeste Argentino (Ceballos et al. 2022).

Como projeto, está em discussão a ideia de uma atividade de colaboração triangular no Norte Argentino Estendido (região R3, NAR no que segue), centrada na geração de um Banco de Dados de radiação solar e variáveis afins. A região R3 inclui o Norte Argentino estendendo-se até o Oceano Pacífico a oeste, e o Atlântico a leste. O Banco seria gerenciado basicamente pela EEAOC e compartilhado pelo G-STAR e LAFIAT. O G-STAR poderá fornecer dados GL (estimação satelital), a EEAOC e outras instituições regionais contribuirão com dados de superfície, e o LAFIAT dará apoio às campanhas de calibração da rede EEAOC. As três instituições colaborariam na análise da distribuição e coerência de resultados, e no diagnóstico do clima da radiação solar.

O presente Relatório reflete análises e relações institucionais em dezembro de 2022. Para 2023 está prevista a colaboração com outras instituições, e a publicação de pelo menos dois Relatórios Técnico/Científicos G-STAR, referentes a:

- <u>Diagnóstico do regime climático da Região Norte Grande Argentino</u> (NAR), baseado nas séries de dados mensais 2006-2020 do modelo GL 1.2. A análise em componentes principais (ACP) e análise harmônica ou de Fourier são utilizadas como ferramentas para descrição de regimes de radiação solar, fornecendo informação para um diagnóstico do clima da radiação solar na região. Resultados são apresentados neste Relatório RT GSTAR-002-2023, maio de 2023.
- <u>Banco de Dados de radiação solar do NAR</u>, incluindo arquivos de dados regionais e programas/aplicativos para processamento de dados. Está em processo de atualização o Sistema de Processamento de Dados de Radiação Solar (SPDRAD) para a área total do GL, susceptível de ser adaptado para a região R3. Relatório Técnico RT GSTAR-003-2023 previsto para julho de 2023.

Nesta etapa são utilizados dados mensais medidos e do modelo GL. No curto prazo, o Banco de Dados será estendido para médias diárias de irradiância.

# 1. DADOS E MÉTODOS DE ANÁLISE

# 1.1. Definição da região de análise

A área de definição do modelo GL versão 1.2 cobre uma grade regular de 1800×1800 pixels com resolução 0.04°×0.04° e limites [-100° -28.04°] em longitude, [-50° +21.96°] em latitude. No que segue, os limites de uma região serão representados pelo vetor [lonmin lonmax latmin latmax]. Por exemplo, o GL está definido em [-100 -28.04 -50 +21.96].

Consideram-se 8 regiões para futuras análises de séries temporais e regimes de irradiação solar:

| R1. América do Sul           | [-84  | -31   | -46   | +13]   |
|------------------------------|-------|-------|-------|--------|
| R2. Meso-América do Sul      | [-75  | -38   | -41   | -18]   |
| R3. Grande Norte Argentino   | [-72  | -46   | -32   | -19]   |
| R4. Amazônia                 | [-72  | -46   | -16   | +04]   |
| R5. Nordeste do Brasil       | [-52  | -30   | -20   | +00]   |
| R6. Sul-Sudeste do Brasil    | [-60  | -38   | -36   | -15]   |
| R7. América do Sul Ocidental | [-82  | -70   | -20   | +13]   |
| R8. América Central-Caribe   | [-100 | ) -75 | 5 +03 | 3 +21] |

Nesta etapa, as regiões R1-R8 estão definidas de forma relativamente arbitrária e poderão ser redesenhadas. A Figura 1 ilustra a extensão geográfica do modelo GL 1.2, e a localização de R1, R2, R3.

- Entre 2000 e 2017, os recortes de imagens do sensor Imager (satélites GOES-8, -10, -12 e 13) sofreram diferentes formatações e/ou limitações. Assim, a região R1 [-84 -31 -46 +13] contém a série temporal mais completa do GL versão 1.2.
- A região R3 [-72 -46 -32 -19] cobre uma faixa de longitudes com razoável densidade de medições de irradiância (nas províncias de Tucumán e Salta na Argentina, no norte de Chile e no sul do Brasil), entre o Pacífico e o Atlântico. As características climáticas são descritas na seção 6.

Neste trabalho a análise está focada na região R3. Para essa região, os dados são

- <u>Lista de locais</u> ListaUnicaCompleta\_202305.txt enumera os locais de interesse em R3. Eles podem ter dados GL (modelo), GG (medidos), ou ser de interesse estratégico. A Lista inclui N= 307 locais em 202305, indicando 6 dados: 1. ID definido para locais do modelo GL 1.2;
   Latitude (decimal); 3. Longitude (decimal); 4. Altitude (msn); 5. Dono (país so local, ou código para uma rede); 6. IDlocal (específico dentro da rede; se não definido, adota-se o ID do modelo). É inicado também nome do local ou estação, e do país.
- <u>Sequência de médias mensais do modelo GL 1.2; período: 2006-2020</u>. Dados organizados segundo recortes da Região R3, em três quinquênios (períodos de 60 meses). Estrutura: arquivos digitais de matrizes 326 linhas x 651 colunas x 60 meses, resolução espacial 0,04°. Cada dado é um inteiro formato Integer\*2 (parte inteira de X= 10 × irradiância média em W m<sup>-2</sup>).
- <u>Conjunto GL de locais escolhidos</u> (planilhas GL*ano1ano2*-R3.txt). Arquivos de texto (\*.txt) descrevendo séries temporais de valores mensais de GL para N locais. Os arquivos estão estruturados em quinquênios (2006-2010, 2011-2015, 2012-2020), como matrizes de N linhas × 66 colunas. As 6 primeiras colunas informam dados cadastrais do local: ID, latitude,

longitude, altitude, dono, ID eventual definido pelo dono. As 60 colunas seguintes correspondem a médias mensais no quinquênio. O número de locais poderá ser incrementado no futuro.

<u>Dados GG de medições locais</u> (planilhas GGano1ano2-R3.txt). Arquivos de texto (\*.txt) descrevendo séries temporais mensais de medições de irradiância média mensal. A estrutura dos arquivos é idêntica àquela dos GLano1ano2-R3.txt, portanto têm numerosos dados faltantes. Os valores correspondem a dados inseridos até 202305; os arquivos sofrerão contínua inclusão de dados.

<u>Nota</u>: dados não disponíveis são indicados com -999 ou zero. Se indicados para Latitude ou Longitude, o local é considerado indefinido.



**Figura 1**. (superior) Áreas de análise previstas para desempenho do modelo GL e para diagnóstico de regimes climáticos da radiação solar. (inferior) Área R3. Fonte: Google Earth Pro.



**Figura 2**. Distribuição geográfica de locais selecionados para tabelas com dados de estação (G) e de modelo (GL). Em verde: rede EEAOC; vermelho: estações INENCO, Universidad Nacional de Salta; cian: rede automática INMET, Brasil; magenta: rede SONDA, INPE, Brasil; azul: GERSOL, Universidad Nacional de Luján.

A Figura 2 descreve a distribuição geográfica de locais para análise e base de dados escolhidos em R3. Algumas observações sobre a relação entre estimativas GL e medições G são apresentadas na seção 2.1. Descrição mais detalhada da distribuição de locais e dados de estação disponíveis será objeto da Segunda Parte deste Relatório (previsão: julho 2023).

#### 1.2. Acerca da comparação entre modelo e medições

É digna de atenção a questão da comparação entre estimadores GL e medidas de radiação solar G, cada um com desvios próprios associados a defeitos de modelagem (caso da estimação) e erros de calibração e/ou degradação de sensor (caso das medidas). Considere-se um local com uma série temporal de valores *verdadeiros* de irradiância média Go<sub>t</sub>, sendo t= 1, 2, ..., T, estimativas de modelo GL<sub>t</sub> e medidas de radiômetro G<sub>t</sub>. As medidas reais deveriam ter sido Go<sub>t</sub>, com média Goo e desvio padrão So. A relação entre Gt e Got é

$$\mathbf{G}_{\mathrm{t}} = \alpha \; (\mathbf{G}\mathbf{O}_{\mathrm{t}} + \mathbf{E}\mathbf{G}), \tag{1}$$

onde EG é um erro sistemático e  $\alpha$  um fator de calibração. A média Gm, variância Var(G) e o desvio padrão SG calculados a partir da série G<sub>t</sub> serão

$$Gm = \alpha (Goo + EG); \tag{2}$$

$$\operatorname{Var}(G_t) = \alpha^2 \operatorname{Var}(Go_t) \to SG = \alpha \text{ So.}$$
 (3)

Com o mesmo raciocínio, se os valores estimados  $GL_t$  têm erro sistemático EGL e um fator de calibração  $\beta$ , então

$$GLm = \beta (Goo + EGL),$$
  $SGL = \beta SGL.$  (4)

Das expresses (2), (3) e (4) percebe-se que as variáveis padronizadas z<sub>G</sub> e z<sub>GL</sub> serão

$$z_{Gt} = (G_t - Gm)/SG = (Go_t - Goo)/So = z_{GLt}.$$
(5)

Conclusão: idealmente, pode-se esperar que as variáveis padronizadas  $z_{Gt}$  e  $z_{GLt}$  sejam idênticas, com um diagrama de dispersão  $z_{GL}$  versus  $z_G$  alocado na diagonal principal. Afastamentos dessa diagonal devem ser atribuído a outras causas que a calibração, como variações atmosféricas ou de calibração do próprio detector do satélite, fazendo variar os parâmetros EGL,  $\beta$  (mas não EG,  $\alpha$ ) no modelo de estimativa; por outro lado, problemas na manipulação do radiômetro (sombreamento/reflexão de radiação solar por prédios ou árvores próximos; cortes de energia na instrumentação; interferência do observador) mudam temporariamente EG,  $\alpha$  enquanto que o modelo satelital não inclui estes acidentes. Claramente, a série real ou "absoluta" Go<sub>t</sub> é desconhecida e não pode ser deduzida das séries de GL<sub>t</sub> ou G<sub>t</sub>, a menos que esta última seja produzida por instrumentos calibrados e sujeitos a cuidadoso controle do processo de medição; neste caso, assume-se que Got = Gt.

Neste contexto, ao trabalhar com variáveis padronizadas, a análise em componentes principais de dados regionais tende a representar objetivamente os regimes de radiação solar eliminando problemas de calibração (de redes de superfície, ou de modelos satelitales) desde que os valores  $G_t$  ou  $GL_t$  sejam produzidos em condições "estacionárias" de calibração.

#### 1.3. Análise em componentes principais (ACP)

A correlação entre séries temporais de dados de uma rede de estações de medida permite analisar características comuns de variáveis meteorológicas e sua distribuição espacial. A análise em componentes principais (ACP, no que segue) permite generalizar este conceito, detectando comportamentos característicos e a distribuição geográfica de sua influência. Partindo de um conjunto de N estações, cada uma com T informações (sequência temporal), estas podem organizar-se numa uma matriz de dados  $X(N \times T)$  e matriz de coeficientes de correlação  $Q(N \times N)$ . Se houver estações com elevada correlação entre elas (positiva ou negativa), a ACP permite reduzir o total de informações à série temporal de um número M muito menor de variáveis ou "comportamentos principais" com matriz  $Z(M \times T)$ , capaz de reproduzir o comportamento das N estações de forma simples (linear) e com elevado grau de acurácia. Ao mesmo tempo, o grau de correlação elevado entre a série de dados  $X_k(t)$  de algumas estações o e os valores  $Z_m(t)$  de comportamentos principais permite grupar (regionalizar) as estações de forma objetiva, em M conjuntos característicos.

Os pixels da região R3 podem ser consideradas como N= $326 \times 651$ = 212226 "estações virtuais" com T= 180 dados mensais ao longo de 15 anos. Todavia, a ACP seria impraticável dada a dimensão de matriz Q resultante. Optou-se por escolher N= 80 pixels distribuídos homogeneamente em R3 para encontrar as componentes principais Z<sub>m</sub>(t) mais relevantes na região. Os elementos teóricos da ACP foram extraídos de Johnson e Wichern (2007). Resumidamente, seja uma rede solarimétrica com N estações, fornecendo dados G<sub>k</sub>(t), t=1,2,...,T; k=1,2,...,N. Consideremos os valores padronizados y<sub>k</sub>(t) pela média Gmedia<sub>k</sub> e desvio padrão STD<sub>k</sub>

$$y_k(t) = [G_k(t) - Gmedia_k]/STD_k,$$
(1)

$$Gmedia_k = \Sigma_t G_k(t) / T,$$
(2)

$$STD_k^2 = \Sigma_t [G_k(t) - Gmedia_k]^2 / T.$$
(3)

A matriz N×T de dados  $y_{kt}$  (k= linha, t= coluna) pode ser imaginada como a evolução temporal de um vetor **Y**(t) num espaço de N dimensões. A ACP procura enxergar em que medida os vetores

Y se alinham ao longo de um *eixo principal* orientado segundo um vetor unitário **a**. A solução mediante o critério de mínima distância euclidiana apresenta um conjunto de N *eixos principais*  $\{\mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_m, ..., \mathbf{a}_N\}$  ortonormais e soluções da equação

$$\mathbf{Q} \mathbf{a} = \lambda \mathbf{a}. \tag{4}$$

**Q** é a matriz de correlação temporal entre os vetores **Y**, com N autovalores  $\lambda$ . Os vetores **Y**(t) referidos ao sistema ortonormal {**a**<sub>m</sub>} têm N *componentes principais* z<sub>1</sub>(t), z<sub>2</sub>(t) ... z<sub>N</sub>(t) ou vetores **Z**(t). A relação entre os vetores **Y** e **Z** é definida pela matriz  $\mathbf{A}(N \times N) = {\mathbf{a}_m}$  de transformação de coordenadas, sendo

$$\mathbf{A} \mathbf{Z}(t) = \mathbf{Y}(t) , \quad \mathbf{A}^{-1} = \mathbf{A}', \quad \mathbf{Z}(t) = \mathbf{A}' \mathbf{Y}(t);$$
(5)

$$a_{m1} y_{1t} + a_{m2} y_{2t} + \dots + a_{mN} y_{Nt} = z_{mt}$$
, (6)

$$a_{1k} z_{1t} + a_{2k} z_{2t} + \dots + a_{Nk} z_{Nt} = y_{kt}.$$
 (7)

Se por um lado as variáveis  $y_k(t)$  têm média nula e variância unitária, demonstra-se que as CPs  $z_m(t)$  têm média nula, variância  $\lambda_m$  e são mutuamente ortogonais. Assim, as  $z_{mt}$  podem ser normalizadas para variáveis  $w_{mt}$ , e os coeficientes  $a_{mk}$  serem transformados em cargas fatoriais ("weighting factors")  $f_{mk}$ , de forma que a partir da Eq. 6 e da ortonormalidade das variáveis  $w_{mt}$ , tem-se

$$w_{mt} = z_{mt} / \sqrt{\lambda_m}, \quad a_{mk} \cdot \sqrt{\lambda_m} = f_{mk}, \tag{8}$$

$$f_{1k} w_{1t} + f_{2k} w_{2t} + \dots + f_{Nk} w_{Nt} = y_{kt}$$
(9)

$$f_{1k}^{2} + f_{2k}^{2} + \dots + f_{nk}^{2} + \dots + f_{Nk}^{2} = 1.$$
(10)

As equações (9) e (10) são fundamentais. Por um lado, a Eq. 9 representa uma descrição *exata* da k-ésima variável original; por outro lado, na Eq. 10 os termos  $f_{nk}^2$  representam a contribuição da m-ésima CP para a variância da k-ésima estação e dependem fortemente da grandeza dos autovalores  $\lambda_m$ . Como consequência, apenas algumas CPs (sejam M<<N) poderiam acumular uma elevada fração de sua variância, não se justificando um desenvolvimento maior (o resto seria, muito provavelmente, constituído por "erros" ou flutuações que não contribuem à informação sobre  $y_{kt}$ ). Finalmente, se o conjunto de estações abrange uma área geográfica extensa, observar a distribuição de valores do fator  $f_{m^*}$  permite regionalizar a influência da m-ésima componente principal sobre a radiação solar.

Para evitar uma matriz de correlação  $\mathbf{Q}$  com dimensão intratável, foram escolhidos 80 pixels num padrão geográfico regular, como ilustrado na Fig 6. Programas em Octave (compatíveis MatLab) permitiram resolver a Eq. 4, determinando as matrizes  $\mathbf{A} \in \mathbf{Z}$ , a as cargas fatoriais associadas (80 vetores  $\mathbf{f}_m$ ).

A matriz **A** forneceria apenas uma visão genérica da distribuição geográfica de cargas fatoriais  $f_{m^*}$  na região R3. Considerando que  $f_{mk}$  representa o coeficiente de correlação entre a variável  $y_k(t)$  original e a  $w_m(t)$  principal (a qual é válida não apenas para a amostra indicada na Figura 6, como também para *o inteiro conjunto* da região R3) foi calculado o coeficiente de correlação para todos os pixels em R3, gerando assim campos de cargas fatoriais em alta resolução espacial. O estimador do coeficiente de correlação do k-ésimo pixel com a m-ésima CP é avaliado segundo

$$f_{mk} = \sum_{t=1,T} y_k(t) w_m(t) / T.$$
(11)

Nesta expressão, a série  $y_k(t)$  é fornecida pelo modelo GL com resolução de 0,04° (eq. 1),  $w_m(t)$  foi obtida na eq. (8), e T é o comprimento da série temporal (neste trabalho, 180 meses).

#### 1.4. Análise Harmônica ou de Fourier (AH)

Neste trabalho, a AH é aplicada às séries temporais de componentes principais da radiação solar. Séries temporais de uma variável x(t) com média nula num intervalo *discreto* t= 1,2, ...,T (T par) são representadas *exatamente* pela soma de Nh = T/2 de componentes harmônicas (Bloomfield 1967)

$$x(t) = \sum_{h=1,Nh} A_h \cos[h \omega o (t-1)] + B_h \operatorname{sen}[h \omega (t-1)], \qquad (12a)$$

$$\omega_0 = 2\pi/T$$
 (frequência fundamental),  $Nh = T/2$  (número de harmônicos), (12b)

$$A_{\rm h} = (2/T) \ \sum_{t=1,T} x(t) \cos[h \ \omega_{\rm o} \ (t-1)], \tag{12c}$$

$$B_{\rm h} = (2/T) \ \sum_{t=1,T} x(t) \, \text{sen}[h \, \omega_{\rm o} \ (t-1)]. \tag{12d}$$

Definições e propriedades:

$$C_h^2 = A_h^2 + B_h^2$$
, ( $C_h$  = amplitude do *h*-ésimo harmônico), (13)

$$V = \text{variancia de } x(t) = (1/N) \sum_{t} x^2(t), \tag{14}$$

$$\sum_{h} C_{h}^{2} / 2 = \sum_{h} V_{h} = V.$$
(15)

Nesta última equação,  $V_h$  é a contribuição de cada harmônico para a variância de x(t). No caso de variáveis padronizadas, V=1. Para um número Nh elevado,  $V_h$  é reduzido; resulta conveniente pensar em termos de uma densidade espectral  $U(\omega)$ , onde

$$V = \int U(\omega) \, \mathrm{d}\omega, \tag{16a}$$

$$\omega = h \,\omega_0 \to \mathrm{d}\omega = \omega_0 \,\,\delta h = 2\pi/T,\tag{16b}$$

$$V_{\rm h} = U(\omega) \, \mathrm{d}\omega \to U(\omega) = (T/4) \, C_{\rm h}^{\ 2} \tag{16c}$$

Num gráfico *U versus*  $\omega$  a área embaixo de S( $\omega$ ) é a variância *V* da série temporal. Considerando que *T*=180 dados permitem definir harmônicos ( $C_h$ ,  $\omega_h$ ) num intervalo amplo de frequências (*Nh* = 90  $\approx 10^2$ ), pode ser conveniente visualizar a densidade espectral em função do logaritmo de *h* (ou seja, com abscissa log<sub>10</sub>*h* num diagrama semilogx). Nesse caso, para interpretar a área como variância a ordenada deve ser

$$U(h) = \delta V / \delta \log_{10} h = \log_{e} 10 . V_{h} / (\delta h/h) = \log_{e} 10 h C_{h}^{2} / 2.$$
(17a)

A análise harmônica pode ser aplicada à serie temporal de cada pixel,  $y_n(t)$ ; porém, é mais útil utilizá-la para a descrição de uma variável temporal característica da região R3, como a *m*-ésima componente principal  $w_m(t)$ . Portanto, a integral geométrica do gráfico  $U \times \log_{10} h$  é equivalente à variância (neste caso, unitária). É relevante notar que se um espectro é do tipo "ruído branco" (não há preferência espectral de componentes), então o espectro  $U^*$  correspondente é

$$U^{*}(h) = \log_{e} 10 h (V/Nh).$$
 (17b)

# 2. DISTRIBUIÇÃO REGIONAL DE VALORES MÉDIOS DE RADIAÇÃO





GL - coeficiente variação interanual 2006-2020



Figura 3. Média anual, desvio padrão da série e variabilidade interanual da média anual

Na Figura 3, o valor médio de GL corresponde à média  $GL_{media}$  dos 180 valores mensais (Eq. 2); o desvio padrão S da série (Eq. 3) é com relação a  $GL_{media}$  e inclui o efeito conjunto do ciclo anual de valores mensais e da flutuação deles ano-a-ano. O coeficiente de variação interanual Cvar se refere à sequência de 15 médias anuais  $GL_a$  com desvio padrão  $S_a$  dessas médias, avaliando-se como

#### $Cvar = S_a/GL_{media}$ .

(18)

Note-se que a média dos valores  $GL_a$  coincide com  $GL_{media}$ . A Figura 4 ilustra a distribuição de valores médios de julho (inverno) e janeiro (verão) para o período 2006-2020. A Figura 2 mostra que o interior de Argentina, o Paraguai e o sul do Brasil exibem Cvar  $\approx 0,04$  semelhante ao encontrado para a Pampa Húmeda argentina (Ceballos et al. 2022) extensas áreas dos Estados Unidos (Gueymard e Wilcox 2011), África (Kariuki e Sato 2017) e Austrália (Copper e Bruce 2017)

Análise de aspectos climatológicos é realizada na seção 6.



regiao [-72 -46 -32 -19] - GL media mes janeiro



Figura 4. Média mensal dos meses próximos do solstício de inverno (julho) e de verão (janeiro)

#### 2.1. Exemplos de ajuste entre estimativas por satélite e medidas à superfície

Com relação ao modelo GL versão 1.2 (Ceballos et al. 2004), é importante observar que assume refletância do solo constate ( $\text{Ref}_{\text{surface}} \approx 0,06$ ), típica de superfícies vegetais no visível (com valor Refmin= 0,09 observado em imagens de satélite. A cobertura parcial C por nuvens de tipo cumuliforme é avaliada segundo

$$C = (Ref - Refmin)/(Refmax - Refmin).$$
(18)

Nesta expressão, Ref é a refletância observada por satélite para um pixel (dimensão 1 a 4 km). O valor Refmax= 0,465 corresponde à transição Cu-St de nebulosidades, sendo C(Ref<Refmin)=0 para céu claro e C(Ref>Refmax)=1 para céu coberto. Locais com Ref<sub>surface</sub> > Refmin induzem valores superiores de C (falsa nebulosidade) e estimativas GL inferiores, como se observa em locais com superfícies salinas perto dos Andes, especialmente no Salar de Uyuni (coordenadas). O mesmo efeito é induzido por superfícies nevadas (vide Andes ao sul de 29°S emjulho, na Figura 3). O impacto de erros induzidos no estimador de nebulosidade é menor quando Ref<Refmin como é o caso de superfície oceânica (com Ref<sub>surface</sub>  $\leq$  0,03). A influência de aerossol e de da variação espacial de Refsurface é maior na estimativa de radiação direta a incidência normal (variável crítica para conversão de energia solar em elétrica) do que na irradiância global (Porfírio e Ceballos, 2017).

As Figuras 5 ilustram as séries temporais GL e G para duas estações do INMET(<sup>1</sup>), incluindo a série de desvios dG= GL-G (verde). Em tracejado são indicados o valor do desvio médio de dG (*mean bias* ou viés MEB), e dos valores MBE±2 STdG, sendo STdG = desvio padrão de dG. A estação 30224 apresenta regular concordância com o modelo GL, sugerindo quw este pode ser utilizado para analisar séries temporais de irradiância média na ausência de dados de medição terrestre. É interessante observar que aparentemente não há tendências nas séries G e GL. A padronização da série leva naturalmente à identidade Gnor = GLnor. No caso da estação 30229, claramente os valores terrestres apresentam desvio considerável e que evolui no tempo (zero e fator de calibração com problemas). O histograma representa as frequências (havendo eliminado os pares (G,G) que exteriores ao intervalo MBE±2 STdG. Novamente, as variáveis normalizadas Gnor, GLnor passam a ter estreita correspondência 1:1, justificando a aplicação da ACP às séries de GL e sugerindo que o uso de GL padronizado produzirá a mesma descrição espaço-temporal que uma rede densa de estações terrestres.

É importante notar que o uso de variáveis normalizadas <u>não corrige</u> os erros originais das irradiâncias G e GL, devidos por exemplo a calibração.

<sup>&</sup>lt;sup>1</sup> Estação automática 30224 localizada em Bagé, Rio Grande do Sul (lat -31,3478 lon -54,0133); 30229 automática em Bauru, São Paulo (lat -22,3166 lon -49,0666).

![](_page_14_Figure_0.jpeg)

**Figuras 5**. Comparação GL x G 2011-2020 para 2 estações do INMET. Azul: valores GL; vermelho: G; verde: desvio GL-G. Em tracejado, os níveis MBE e MBE± 2.STdG. Acompanham diagramas de dispersão antes e depois de normalizar G e GL. No histograma indica-se em vermelho MBE ± 2.STdG.

# 3. ANÁLISE EM COMPONENTES PRINCIPAIS DA SÉRIE TEMPORAL

A Figura 6 ilustra a distribuição de 80 pontos de amostragem, separados em latitude por  $\Delta$ lat= 2.5° e em longitude por  $\Delta$ lon= 1.5°. Esta separação é compatível com a variabilidade associada a regiões homogêneas como a Pampa Húmeda (Grossi Gallegos 1998) embora talvez maior que a atribuível à topografia regional ou a regimes micrometeorológicos. Este aspecto será analisado mais adiante.

![](_page_15_Figure_2.jpeg)

muestreo region NAR

Figura 6. Distribuição de pontos de amostragem no NAR

As Figuras 7 e 8 ilustram características fundamentais do regime de radiação solar na região. Na Figura 7 são apresentados os autovalores  $\lambda_n$  da matriz de correlação  $\mathbf{Q}(80\times80)$ . Espera-se que a soma deles seja igual ao número de pontos de amostragem N=80. Observa-se que as primeiras componentes principais têm  $\lambda_1 = 68,2$ ;  $\lambda_2 = 3,71$ ;  $\lambda_3 = 2,19$ ;  $\lambda_4 = 1,14$  e  $\lambda_n <1$  para as subsequentes ou seja apenas 5 CPs representariam o sistema, acumulando 95% da variância, com a CP1 absolutamente predominante (contendo 85% da informação total).

É importante notar que as CPs não têm influência espacial homogênea. A Figura 8 apresenta a distribuição geográfica das duas primeiras cargas fatoriais ( $f_1 e f_2$ ), obtidas por correlação do campo espaço-temporal de GL normalizado y(lin, col, t) com as respectivas CPs [ $z_n(t)$ ]. Percebese que os campos de correlação F1 e F2 fornecem uma representação espacial consistente da influência das CPs, resgatando detalhes geográficos com alta resolução (0,04°). Por exemplo, é replicada a menor correlação com CP1 na região de sopé oriental das Serras Andinas que Ceballos et al. (2022) encontraram para uma análise semelhante, limitada à área do Noroeste Argentino e num período mais curto (2017-2021). Por um lado, percebe-se que se a CP1 é determinante para uma extensa área da região R3, a CP2 tem maior peso na sub-região indicada; por outro lado, a predominância geral da CP1 na R3 (com elevados valores de f<sub>1</sub>) impede melhor visualizar variações sub-regionais como as sugeridas a oeste (presença do Oceano Pacífico), ou a leste na

região brasileira de Santa Catarina e São Paulo (com a presença do oceano Atlântico). Nesta última região, o fator  $f_2$  mostra peso não desprezível da CP2.

![](_page_16_Figure_1.jpeg)

Figura 7. Autovalores  $\lambda$  da matriz de correlação

![](_page_16_Figure_3.jpeg)

regiao R3 - GL carga fatorial F1

Figura 8. Cargas fatoriais das componentes principais CP1 e CP2

![](_page_17_Figure_0.jpeg)

Figura 9. Variação temporal de CP1 e CP2 de GL, incluindo média móvel anual de CP1

A figura 9 visualiza os valores de CP1 e CP2 ao longo do período 2006-2020. A CP1 evidencia uma periodicidade anual com máximo no início de cada ano. Algumas observações devem ser feitas, que podem estar ligadas à estimativa de refletância nas imagens da DSA/CPTEC, afetada na série GOES 8, 10, 12 pela degradação do detector VIS no sensor Imager e/ou estimativa inadequadas de correção de calibração:

- Valores mínimos constantes da ordem de w<sub>min</sub> ≈ -1.2 em 2006-2007 mudando para w<sub>min</sub> ≈-1.5 em 2008-2020.(<sup>2</sup>)
- Valores máximos w<sub>max</sub>≈ +1 no início de 2007 a 2009; diminuição aparentemente anormal em 2010, seguida de valores máximos constantes w<sub>max</sub>≈ +1.6 em 2011, 2012, 2013.
- Após um evidente máximo em 2014, observa-se estabilização em w<sub>max</sub> ≈ 1.2-1.3 a partir de 2015 (este último período utilizou imagens Imager GOES 13 com calibração comunicada pela NOAA, e por ABI GOES 16 calibradas na origem).

Depreende-se que a série GL até pelo menos 2011 requer análise e ajustes associados à calibração do sinal VIS GOES, embora não afetem a descrição climática do GL.

Os resultados indicam que a série da média mensal na região R3 pode ter uma aproximação razoável (a nível de 95% de variância, ou erro quadrático médio de 5%), através da equação

(19)

$$GL(t) \approx \langle GL \rangle + SD \sum_{k=1,5} f_k \cdot w_k(t).$$

Para valores típicos SD= 50 W.m<sup>-2</sup>, 5% da variância representa ~11 W.m<sup>-2</sup>. Os parâmetros  $\langle GL \rangle$ , SD e f<sub>k</sub> são descritos por matrizes bidimensionais com tamanho (Nlin, Ncol). Assim, a série temporal de irradiância solar mensal descrita por um arquivo GL(Nlin, Ncol, Nt) admite uma imagem matemática com qualidade semelhante (e talvez "filtrada de ruídos") utilizando apenas 7 arquivos digitais com tamanho (Nlin, Ncol): um de média, um de desvio padrão da série, e 5 de cargas fatoriais, ou seja redução 180 $\rightarrow$ 7 na memória requerida, além de um arquivo de texto para as CPs, consistente de uma matriz com dimensão (180×5).

A análise harmônica de Fourier para CP1 indicou um sinal anual (harmônico 15) absolutamente predominante contribuindo para 17,9% da variância da CP1. A grande maioria dos outros harmônicos tem sinal com intensidade inferior à de um "ruído branco". A Figura 10A ilustra o

 $<sup>^2</sup>$  O valor predominante regional é SD≈ 50 Wm<sup>-2</sup>. Uma variação  $\delta$ w=0,1 implica em 5 Wm<sup>-2</sup> em média diária, ou 0,12 kWh m<sup>-2</sup> diários.

comportamento espectral da CP1. A Figura 10B apresenta o harmônico anual h = 15 da CP1, a composição dos três sinais  $h=[15\cup30\cup45]$ , e a irradiância média Go(t) no topo da atmosfera nos dias 10 e 20 de cada mês (padronizada para a média e desvio padrão do ciclo anual). Observa-se a correspondência estreita com Go(t), com desvios no verão e no inverno. Um sinal anual puramente senoidal (com máximo perto do solstício de dezembro) foi encontrado para irradiância mensal na Pampa Húmeda da Argentina, período 2011-2017 (Ceballos et al., 2022), região localizada imediatamente ao sul da R3 e geograficamente centrada em 62°W. Uma filtragem desse ciclo anual associado a Go(t) fornece uma variável alternativa à irradiância: o *índice Kt*.

![](_page_18_Figure_1.jpeg)

Figura 10A. CP1 de GL normalizada, e seu espectro de frequência

![](_page_18_Figure_3.jpeg)

**Figura 10B.** Composição dos sinais harmônicos anuais h=15 e  $h=[15\cup 30\cup 45]$  (barras) e da irradiância média no topo da atmosfera Go (quadrados) na latitude  $\phi=-27^{\circ}$ .

# 4. ACP APLICADA AO ÍNDICE Kt (TRANSMITÂNCIA ATMOSFÉRICA)

A predominância de um ciclo anual (como ilustrado na Figura 10A e ligado à declinação do Sol) tende a equalizar a descrição do regime de radiação solar sobre o conjunto da R3, e eventualmente impede a detecção de regiões com flutuações locais características associadas (p.ex. a topografia, circulação de massas de ar e contrastes ar/continente). Estas características estão principalmente associadas à nebulosidade local, à duração da cobertura e à espessura óptica dos campos de nuvens. Elas afetam a *transmitância média* do fluxo solar Go incidente no topo da atmosfera. Esta variável é usualmente denominada de "índice Kt" (ou *brightness index*); na escala de um dia, ela é descrita pelo quociente de irradiâncias médias

Kt= GL/Go, (20a)  
Go = 
$$(1/T) \int_{[0,T]} S \cos Z_o dt = (S/\pi) (\cos \varphi \cos \delta \operatorname{senH} + \operatorname{sen} \varphi \operatorname{sen} \delta H),$$
 (20b)  
 $\cos H = - tg \varphi tg \delta.$  (20c)

Nestas expressões, Go é a irradiância média no topo da atmosfera, S a constante solar (corrigida por distância Terra-Sol),  $Z_o$  o ângulo zenital do Sol, T= 86400 segundos (Paltridge e Platt 1976); Go é função da latitude local  $\varphi$  e da declinação  $\delta$ , independente da longitude local. A variável *H* é metade do período diurno ideal local, estimado em termos de ângulo girado pela Terra nesse intervalo. Ver Anexo A.1.

![](_page_19_Figure_4.jpeg)

Figura 11. Valor médio 2006-2020 e desvio padrão da série de Kt

![](_page_20_Figure_0.jpeg)

Figura 12. Distribuição de Kt (valor médio 2006-2020) em janeiro, abril, julho e outubro

Em princípio, a expressão para Kt filtra a oscilação anual de Go (dominante sobre a região R3). Restariam as características espaço-temporais de propriedades atmosféricas (especialmente transmitância, características locais das nuvens, aerossol) e de interação superfície-atmosfera, as quais também podem ter um ciclo anual. A eq. (20a) permite gerar a matriz de dados Kt(Nlin, Ncol, Nt).

As Figuras 11 e 12 ilustram a distribuição de valores médios (anual e mensais, respectivamente). Percebe-se que uma extensa área central de R3 (incluindo Paraguai) é homogênea com valor médio Kt=0,55. A sub-região brasileira vizinha ao oceano Atlântico tem nebulosidade maior (Kt  $\approx$ 0,4) assim como o sopé da Serras Andinas. A região montanhosa ocidental e o Norte do Chile são regiões ensolaradas, com Kt  $\geq$  0,6. Essas características podem mudar ao longo do ano, como ilustrado nas Figuras 12.

ACP foi aplicada para o mesmo conjunto de pontos amostrados indicados na Figura 4. A Figura 13 exibe autovalores resultantes e tabela com valores numéricos dos 10 primeiros.

![](_page_20_Figure_5.jpeg)

| n  | λ     | %    | acum% |
|----|-------|------|-------|
| 1  | 44.39 | 55.5 | 55.5  |
| 2  | 12.67 | 15.8 | 71.3  |
| 3  | 5.57  | 7.0  | 78.3  |
| 4  | 3.24  | 4.1  | 82.3  |
| 5  | 2.29  | 2.9  | 85.2  |
| 6  | 1.87  | 2.3  | 87.6  |
| 7  | 1.24  | 1.6  | 89.1  |
| 8  | 0.92  | 1.2  | 90.2  |
| 9  | 0.75  | 0.9  | 91.2  |
| 10 | 0.70  | 0.9  | 92.1  |
|    |       |      |       |

Figura 13. Autovalores para o campo de índice Kt

Os autovalores  $\lambda_n$  decrescem rapidamente até n=3; a partir de n=8 tem-se  $\lambda<1$  e as CPs posteriores são consideradas "ruído"(<sup>3</sup>). Até n=8 foi acumulado 90,2% da variância total; assim, pode-se esperar um nível de ruído de pelo menos 10% da variância na definição de séries temporais de Kt através da soma de CPs.

A Figura 14 ilustra a distribuição das duas primeiras cargas fatoriais ( $f_1 e f_2$ ), responsáveis por 71% da variância local. As distribuições geográficas são semelhantes às da Figura 8 (embora com sinal trocado), mas existem correlações bem definidas: CP1 tem carga fatorial muito fraca na região montanhosa ocidental e ao norte do Paraguai, substituída por valores elevados de F2 nessas regiões. As Figuras 15 ilustram os campos de F3 e F4. Na Figura 16 a importância relativa das cargas fatoriais e mais evidente, ao representar a contribuição local à variância eliminando valores inferiores a 16% ( $|f_n| < 0.4$ ) mas conservando (para ilustração) a indicação do sinal original. Percebe-se que as duas últimas CPs em conjunto não fornecem preenchimento elevado da variância em algumas sub-regiões. CP3 e CP4 acumuladas preencheriam apenas 10% da variância geral ou 10% da área de R3 (ver Tabela em Figura 13); em sub-regiões onde são significativas apresentam estruturas bipolares com peso na ordem de 25% que sugerem circulações convectiva e subsidente associadas dinamicamente.

![](_page_21_Figure_2.jpeg)

regiao R3 - Kt carga fatorial F1

Figura 14. Cargas fatoriais: Correlação F com a CP1 e CP2

<sup>&</sup>lt;sup>3</sup> A mudança de eixos  $y_k(t) \rightarrow z_m(t)$  representa uma rotação ortogonal. Numericamente, a variância total do conjunto de variáveis  $y_k(t)$  cumpre com a propriedade  $\Sigma_k \operatorname{Var}\{y_k\} = \Sigma_m \operatorname{Var}\{z_m\} = \Sigma_m \lambda_m = N$ . O "critério de Kaiser" postula que uma CP significativa deveria contribuir com STD>1 (ou:  $\lambda$ >1) para a variância total.

![](_page_22_Figure_0.jpeg)

Figura 15. Cargas fatoriais: Correlação F com a CP3 e CP4

![](_page_22_Figure_2.jpeg)

Figura 16. Contribuições F1<sup>2</sup> a F4<sup>2</sup> para a variância local. Representado apenas F<sup>2</sup>>0.16 (|F|>0.4), conservando o sinal de F

#### 4.1 Periodicidades do regime de radiação solar

Enquanto a análise fatorial descreve a influência espacial de "comportamentos principais", a análise harmônica das CPs fornece informação sobre o regime temporal. Embora modulada localmente pela carga fatorial, cada componente principal pode apresentar variações temporais que afetam a região inteira. Aspectos climatológicos são analisados na seção 6. As Figuras 17 a 19 permitem uma análise preliminar.

Na Figura 17 é evidente um sinal anual predominante na CP1; CP2 também tem sinal anual forte, mas acompanhado de flutuações mais complexas. Ainda, a média móvel MM12 (<sup>4</sup>) evidencia máximo em torno do final de 2009 é mínimo em torno do fim de 2013, também observado na Figura 9. Este comportamento singular é mais intenso ainda na CP1, e alerta para falhas na calibração do canal VIS de GOES 10 e 12 (2009 a 2010) e na transição entre GOES 12 e 13 (2013-2014).

![](_page_23_Figure_3.jpeg)

Figura 17. CP1 e CP2 do índice Kt. Incluída média móvel de CP1, ordem 12.

As Figuras 18 descrevem resultados da análise harmônica da CP1. Na Figura 18A observa-se um harmônico anual (h = 15) predominante e mais um quadrimestral (h = 45), responsáveis por 65% da variância de  $w_1(t)$ . Os outros componentes do ciclo anual estão abaixo do nível de ruído branco padrão ( $C_h^2/2 < 1/90$ ). Harmônicos h < 15 acumulam 16,7% da variância da série CP1.

A Figura 18B descreve o espectro da MM12 (com variância  $V_{nmr}$ = 0,211); h<15 acumula 97% de  $V_{nmr}$ . A soma dos harmônicos h=1, 2, 3, 5, 7, 10 descreve as variações temporais de  $w_1(t)$  na escala de mais de um ano. Estes harmônicos são considerados significativos, por comparação com o espectro de ruído branco (Eq. 16b). Para testar o impacto de calibração inadequada do canal VIS em 2009 e 2013, os valores GL mensais desses anos foram substituídos pelo ciclo anual médio em 2006-2020. Não foram observadas mudanças significativas no espectro do ciclo anual ( $h \ge 15$ ). Entretanto, os sinais com período superior a um ano mostram diferenças, como ilustrado na Figura 18C.

<sup>&</sup>lt;sup>4</sup> A média móvel considerada é soma (t-6:t+5)/12 para corresponder exatamente a 12 meses.

![](_page_24_Figure_0.jpeg)

Figura 18A. CP1 do índice Kt (painel superior), e densidade espectral da análise harmônica (painel inferior).

![](_page_24_Figure_2.jpeg)

Figura 18B. Média móvel MM12 da índice CP1 e densidade espectral da análise harmônica. A linha verde é a soma dos harmônicos indicados no painel inferior; a linha tracejada azul avalia o espectro de ruído branco.

![](_page_24_Figure_4.jpeg)

**Figura 18C**. Média móvel MM12 da CP1 e densidade espectral. Similar à Figura 19B, exceto que os anos 2009 e 2013 foram substituídos pelo ciclo médio anual de 2006-2020.

![](_page_25_Figure_0.jpeg)

Figura 19A. CP2 do índice Kt (painel superior), e densidade espectral da análise harmônica (painel inferior).

![](_page_25_Figure_2.jpeg)

espectros resultantes.

As Figuras 19 mostram impacto semelhante na MM12 de CP2 (<sup>5</sup>); h=5-6 e 10 (sinal com periodicidade básica de 2,5-3 anos) permanecem significativos.

<sup>&</sup>lt;sup>5</sup> Anular um par máximo/mínimo distanciados de 4 anos, implica em reduzir pelo menos os harmônicos *h* = 2-3 (períodos 5-8 anos).

![](_page_26_Figure_0.jpeg)

**Figura 20A**. CP3 do índice Kt (painel superior), e densidade espectral da análise harmônica (painel inferior).

![](_page_26_Figure_2.jpeg)

Figuras 20B e 20C. CP3: média móvel MM12 original e com substituição de 2009 e 2013, e espectros resultantes.

O espectro de CP3 contém harmônicos superiores que somam complexidade ao ciclo anual. Harmônicos h= 4-7 (2-4 anos) são sempre significativos.

![](_page_27_Figure_0.jpeg)

**Figura 21A**. CP4 do índice Kt (painel superior), e densidade espectral da análise harmônica (painel inferior).

![](_page_27_Figure_2.jpeg)

**Figuras 21B e 21C**. **CP4**: média móvel MM12 original e com substituição de 2009 e 2013, e espectros resultantes.

Para CP4, a substituição de anos na série original transfere representatividade para h=9 (período 20 meses). É notável que o sinal predominante agora é h=30 (6 meses), complementado com sinal fraco anual (agora secundário), e quadrimestral (h=15 e 45).

**Tabela 1.** Análise harmônica das CP1 a CP4 do índice Kt na região R3. Série temporal com anos 2009 e 2013 substituídos pelo ciclo anual médio. Harmônicos h (período T em meses) com densidade espectral maior que ruído branco. Última coluna: variância acumulada. Parênteses: parâmetros calculados com relação ao total de sinal intra-anual ( $h \ge 15$ ).

| CP1                        | Serie w                                                                      | V1                                                                  |                                                                               | Var=                                                                                       | 943(.83                                                                                                                                                      | 4)                                                                                                                             | MM12                                                                     | 2                                                                        |                                                                                   |                                                                                     | Var= 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .211                                                                                                             |
|----------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| subs                       | h                                                                            | Т                                                                   | А                                                                             | В                                                                                          | $C^{2}/2$                                                                                                                                                    | sum%                                                                                                                           | h                                                                        | Т                                                                        | А                                                                                 | В                                                                                   | $C^{2}/2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | sum%                                                                                                             |
|                            | 15                                                                           | 12                                                                  | 9646                                                                          | .5601                                                                                      | .6221                                                                                                                                                        | 70.0                                                                                                                           | 2                                                                        | 90                                                                       | 114                                                                               | 0770                                                                                | .0095                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 21.3                                                                                                             |
|                            | 45                                                                           | 4                                                                   | .1354                                                                         | 1859                                                                                       | .0265                                                                                                                                                        | 72.9                                                                                                                           | 3                                                                        | 60                                                                       | 0608                                                                              | 0940                                                                                | .0063                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 35.4                                                                                                             |
|                            | 30                                                                           | 6                                                                   | 1463                                                                          | 0412                                                                                       | .0156                                                                                                                                                        | 74.2                                                                                                                           | 4                                                                        | 45                                                                       | 0716                                                                              | +.0339                                                                              | .0031                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 42.5                                                                                                             |
|                            |                                                                              |                                                                     |                                                                               |                                                                                            |                                                                                                                                                              | (83.9)                                                                                                                         | 6                                                                        | 30                                                                       | +.131                                                                             | 0049                                                                                | .0086                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 61.8                                                                                                             |
|                            |                                                                              |                                                                     |                                                                               |                                                                                            |                                                                                                                                                              |                                                                                                                                | 10                                                                       | 18                                                                       | 0204                                                                              | 0520                                                                                | .0016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 65.4                                                                                                             |
| CP2                        | Serie v                                                                      | Vo                                                                  |                                                                               | Var=                                                                                       | 0.941 (                                                                                                                                                      | .840)                                                                                                                          | MM12                                                                     | ,                                                                        |                                                                                   |                                                                                     | Var=0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11                                                                                                               |
| subs                       | h                                                                            | T                                                                   | А                                                                             | В                                                                                          | $C^{2}/2$                                                                                                                                                    | sum%                                                                                                                           | h                                                                        | T                                                                        | А                                                                                 | В                                                                                   | $C^{2}/2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | sum%                                                                                                             |
|                            | 15                                                                           | 12                                                                  | 8212                                                                          | 173                                                                                        | .3520                                                                                                                                                        | 39.7                                                                                                                           | 1                                                                        | 180                                                                      | 1344                                                                              | 0154                                                                                | .0092                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20.5                                                                                                             |
|                            | 24                                                                           | 7.5                                                                 | 0328                                                                          | 246                                                                                        | .0307                                                                                                                                                        | 43.21                                                                                                                          | 2                                                                        | 90                                                                       | .1071                                                                             | 0410                                                                                | .0066                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 35.2                                                                                                             |
|                            | 36                                                                           | 5                                                                   | .0942                                                                         | .0093                                                                                      | .0045                                                                                                                                                        | 43.7                                                                                                                           | 3                                                                        | 60                                                                       | .0859                                                                             | .0791                                                                               | .0068                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50.4                                                                                                             |
|                            | 45                                                                           | 4                                                                   | 0924                                                                          | 199                                                                                        | .0241                                                                                                                                                        | 46.4                                                                                                                           | 6                                                                        | 30                                                                       | 1403                                                                              | .0386                                                                               | .0106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 74.1                                                                                                             |
|                            | 60                                                                           | 3                                                                   | 0068                                                                          | 0399                                                                                       | .0008                                                                                                                                                        | 46.5                                                                                                                           | 10                                                                       | 18                                                                       | .0520                                                                             | .0105                                                                               | .0014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 77.3                                                                                                             |
|                            | 72                                                                           | 2.5                                                                 | .1116                                                                         | .1629                                                                                      | .0195                                                                                                                                                        | 48.7                                                                                                                           |                                                                          |                                                                          |                                                                                   |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                  |
|                            |                                                                              |                                                                     |                                                                               |                                                                                            |                                                                                                                                                              | (54.3)                                                                                                                         |                                                                          |                                                                          |                                                                                   |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                  |
|                            |                                                                              |                                                                     |                                                                               |                                                                                            |                                                                                                                                                              |                                                                                                                                |                                                                          |                                                                          |                                                                                   |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                  |
| CP3                        | Serie w                                                                      | V3                                                                  |                                                                               | Var=                                                                                       | 0.956(.8                                                                                                                                                     | 373)                                                                                                                           | MM12                                                                     | 2                                                                        |                                                                                   |                                                                                     | Var= 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 202                                                                                                              |
| CP3<br>subs                | Serie w<br>h                                                                 | v3<br>T                                                             | А                                                                             | Var=<br>B                                                                                  | 0.956(.8<br>C <sup>2</sup> /2                                                                                                                                | 373)<br>sum%                                                                                                                   | MM12<br>h                                                                | 2<br>T                                                                   | А                                                                                 | В                                                                                   | $Var= 0.2$ $C^{2}/2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 202<br>sum%                                                                                                      |
| CP3<br>subs                | Serie w<br>h<br>15                                                           | $\frac{V_3}{T}$                                                     | A<br>.3355                                                                    | Var=<br>B<br>.8735                                                                         | 0.956(.8<br>C <sup>2</sup> /2<br>.4378                                                                                                                       | 373)<br>sum%<br>47.9                                                                                                           | MM12<br>h<br>3                                                           | 2<br>T<br>60                                                             | A<br>1315                                                                         | B<br>.0472                                                                          | Var= 0.2 $C^{2}/2$ .0098                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 202<br>sum%<br>23.9                                                                                              |
| CP3<br>subs                | Serie w<br>h<br>15<br>30                                                     | $     \frac{T}{12}     6 $                                          | A<br>.3355<br>.1940                                                           | Var=<br>B<br>.8735<br>.0778                                                                | 0.956(.8<br>C <sup>2</sup> /2<br>.4378<br>.0218                                                                                                              | 373)<br>sum%<br>47.9<br>50.3                                                                                                   | MM12<br>h<br>3<br>4                                                      | 2<br>T<br>60<br>45                                                       | A<br>1315<br>0391                                                                 | B<br>.0472<br>1096                                                                  | Var= $0.2$<br>$C^{2}/2$<br>.0098<br>.0068                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 202<br>sum%<br>23.9<br>40.4                                                                                      |
| CP3<br>subs                | Serie w<br>h<br>15<br>30<br>36                                               |                                                                     | A<br>.3355<br>.1940<br>.2192                                                  | Var=<br>B<br>.8735<br>.0778<br>0292                                                        | 0.956(.8<br>C <sup>2</sup> /2<br>.4378<br>.0218<br>.0244                                                                                                     | 373)<br>sum%<br>47.9<br>50.3<br>52.9                                                                                           | MM12<br>h<br>3<br>4<br>6                                                 | 2<br>T<br>60<br>45<br>30                                                 | A<br>1315<br>0391<br>0499                                                         | B<br>.0472<br>1096<br>.0627                                                         | Var= $0.2$<br>$C^{2}/2$<br>.0098<br>.0068<br>.0032                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 202<br>sum%<br>23.9<br>40.4<br>48.3                                                                              |
| CP3<br>subs                | Serie w<br>h<br>15<br>30<br>36<br>60                                         |                                                                     | A<br>.3355<br>.1940<br>.2192<br>.0542                                         | Var=<br>B<br>.8735<br>.0778<br>0292<br>0234                                                | 0.956(.8<br>C <sup>2</sup> /2<br>.4378<br>.0218<br>.0244<br>.0017                                                                                            | 373)<br>sum%<br>47.9<br>50.3<br>52.9<br>52.1                                                                                   | MM12<br>h<br>3<br>4<br>6<br>1                                            | 2<br>T<br>60<br>45<br>30<br>180                                          | A<br>1315<br>0391<br>0499<br>.0430                                                | B<br>.0472<br>1096<br>.0627<br>.0388                                                | Var= $0.2$<br>$C^2/2$<br>.0098<br>.0068<br>.0032<br>.0017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 202<br>sum%<br>23.9<br>40.4<br>48.3<br>52.4                                                                      |
| CP3<br>subs                | Serie w<br>h<br>15<br>30<br>36<br>60<br>72                                   |                                                                     | A<br>.3355<br>.1940<br>.2192<br>.0542<br>.1737                                | Var=<br>B<br>.8735<br>.0778<br>0292<br>0234<br>.0379                                       | 0.956(.8<br>C <sup>2</sup> /2<br>.4378<br>.0218<br>.0244<br>.0017<br>.0178                                                                                   | 373)<br>sum%<br>47.9<br>50.3<br>52.9<br>52.1<br>55.1                                                                           | MM12<br>h<br>3<br>4<br>6<br>1                                            | 2<br>T<br>60<br>45<br>30<br>180                                          | A<br>1315<br>0391<br>0499<br>.0430                                                | B<br>.0472<br>1096<br>.0627<br>.0388                                                | Var= 0.2<br>C <sup>2</sup> /2<br>.0098<br>.0068<br>.0032<br>.0017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 202<br>sum%<br>23.9<br>40.4<br>48.3<br>52.4                                                                      |
| CP3<br>subs                | Serie w<br>h<br>15<br>30<br>36<br>60<br>72                                   |                                                                     | A<br>.3355<br>.1940<br>.2192<br>.0542<br>.1737                                | Var=<br>B<br>.8735<br>.0778<br>0292<br>0234<br>.0379                                       | 0.956(.8<br>C <sup>2</sup> /2<br>.4378<br>.0218<br>.0244<br>.0017<br>.0178                                                                                   | 373)<br>sum%<br>47.9<br>50.3<br>52.9<br>52.1<br>55.1<br>(.603)                                                                 | MM12<br>h<br>3<br>4<br>6<br>1                                            | 2<br>T<br>60<br>45<br>30<br>180                                          | A<br>1315<br>0391<br>0499<br>.0430                                                | B<br>.0472<br>1096<br>.0627<br>.0388                                                | Var= 0.2<br>C <sup>2</sup> /2<br>.0098<br>.0068<br>.0032<br>.0017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 202<br>sum%<br>23.9<br>40.4<br>48.3<br>52.4                                                                      |
| CP3<br>subs                | Serie w<br>h<br>15<br>30<br>36<br>60<br>72<br>Serie w                        | $     \frac{\mathbf{T}}{12} \\                                    $ | A<br>.3355<br>.1940<br>.2192<br>.0542<br>.1737                                | Var=<br>B<br>.8735<br>.0778<br>0292<br>0234<br>.0379<br>Var=                               | 0.956(.8<br>C <sup>2</sup> /2<br>.4378<br>.0218<br>.0244<br>.0017<br>.0178                                                                                   | 373)<br>sum%<br>47.9<br>50.3<br>52.9<br>52.1<br>55.1<br>(.603)<br>764)                                                         | MM12<br>h<br>3<br>4<br>6<br>1<br>MM12                                    | 2<br>T<br>60<br>45<br>30<br>180<br>2                                     | A<br>1315<br>0391<br>0499<br>.0430                                                | B<br>.0472<br>1096<br>.0627<br>.0388                                                | Var= 0.2<br>C <sup>2</sup> /2<br>.0098<br>.0068<br>.0032<br>.0017<br>Var= 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 202<br><u>sum%</u><br>23.9<br>40.4<br>48.3<br>52.4<br>317                                                        |
| CP3<br>subs<br>CP4<br>subs | Serie w<br>h<br>15<br>30<br>36<br>60<br>72<br>Serie w<br>h                   | <sup>V3</sup><br>T<br>12<br>6<br>5<br>3<br>2.5<br>V4<br>T           | A<br>.3355<br>.1940<br>.2192<br>.0542<br>.1737<br>A                           | Var=<br>B<br>.8735<br>.0778<br>0292<br>0234<br>.0379<br>Var=<br>B                          | 0.956(.8<br>C <sup>2</sup> /2<br>.4378<br>.0218<br>.0244<br>.0017<br>.0178<br>0.937(.7<br>C <sup>2</sup> /2                                                  | 373)<br>sum%<br>47.9<br>50.3<br>52.9<br>52.1<br>55.1<br>(.603)<br>764)<br>sum%                                                 | MM12<br>h<br>3<br>4<br>6<br>1<br>MM12<br>h                               | 2<br>T<br>60<br>45<br>30<br>180<br>2<br>T                                | A<br>1315<br>0391<br>0499<br>.0430                                                | B<br>.0472<br>1096<br>.0627<br>.0388<br>B                                           | Var= 0.2<br>$C^{2}/2$<br>.0098<br>.0068<br>.0032<br>.0017<br>Var= 0.2<br>$C^{2}/2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 202<br><u>sum%</u><br>23.9<br>40.4<br>48.3<br>52.4<br>317<br>sum%                                                |
| CP3<br>subs<br>CP4<br>subs | Serie w<br>h<br>15<br>30<br>36<br>60<br>72<br>Serie w<br>h<br>30             | $ \frac{T}{12} $ 6 5 3 2.5 $ \frac{V_4}{T} $ 6                      | A<br>.3355<br>.1940<br>.2192<br>.0542<br>.1737<br>A<br>.4804                  | Var=<br>B<br>.8735<br>.0778<br>0292<br>0234<br>.0379<br>Var=<br>B<br>.5636                 | 0.956(.8<br>C <sup>2</sup> /2<br>.4378<br>.0218<br>.0244<br>.0017<br>.0178<br>0.937(.7<br>C <sup>2</sup> /2<br>.2742                                         | 373)<br>sum%<br>47.9<br>50.3<br>52.9<br>52.1<br>55.1<br>(.603)<br>764)<br>sum%<br>31.2                                         | MM12<br>h<br>3<br>4<br>6<br>1<br>1<br>MM12<br>h<br>1                     | 2<br>T<br>60<br>45<br>30<br>180<br>2<br>T<br>180                         | A<br>1315<br>0391<br>0499<br>.0430<br>A<br>.2460                                  | B<br>.0472<br>1096<br>.0627<br>.0388<br>B<br>.1338                                  | Var= 0.2<br>$C^{2}/2$<br>.0098<br>.0068<br>.0032<br>.0017<br>Var= 0.2<br>$C^{2}/2$<br>.0392                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 202<br><u>sum%</u><br>23.9<br>40.4<br>48.3<br>52.4<br>317<br><u>sum%</u><br>39.1                                 |
| CP3<br>subs<br>CP4<br>subs | Serie w<br>h<br>15<br>30<br>36<br>60<br>72<br>Serie w<br>h<br>30<br>15       | $     \frac{T}{12} \\             6 \\             5 \\           $ | A<br>.3355<br>.1940<br>.2192<br>.0542<br>.1737<br>A<br>.4804<br>2681          | Var=<br>B<br>.8735<br>.0778<br>0292<br>0234<br>.0379<br>Var=<br>B<br>.5636<br>2360         | $\begin{array}{c} 0.956(.8\\ C^2/2\\ .4378\\ .0218\\ .0244\\ .0017\\ .0178\\ \end{array}$                                                                    | 373)<br>sum%<br>47.9<br>50.3<br>52.9<br>52.1<br>55.1<br>(.603)<br>764)<br>sum%<br>31.2<br>38.5                                 | MM12<br>h<br>3<br>4<br>6<br>1<br>1<br>MM12<br>h<br>1<br>3                | 2<br>T<br>60<br>45<br>30<br>180<br>2<br>T<br>180<br>60                   | A<br>1315<br>0391<br>0499<br>.0430<br>A<br>.2460<br>1230                          | B<br>.0472<br>1096<br>.0627<br>.0388<br>B<br>.1338<br>0086                          | Var= 0.2<br>$C^{2/2}$<br>.0098<br>.0068<br>.0032<br>.0017<br>Var= 0.2<br>$C^{2/2}$<br>.0392<br>.0076                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 202<br><u>sum%</u><br>23.9<br>40.4<br>48.3<br>52.4<br>317<br><u>sum%</u><br>39.1<br>46.6                         |
| CP3<br>subs<br>CP4<br>subs | Serie w<br>h<br>15<br>30<br>36<br>60<br>72<br>Serie w<br>h<br>30<br>15<br>45 | $     \frac{T}{12} \\             6 \\             5 \\           $ | A<br>.3355<br>.1940<br>.2192<br>.0542<br>.1737<br>A<br>.4804<br>2681<br>.2580 | Var=<br>B<br>.8735<br>.0778<br>0292<br>0234<br>.0379<br>Var=<br>B<br>.5636<br>2360<br>0537 | $\begin{array}{c} 0.956(.8\\ C^2/2\\ .4378\\ .0218\\ .0244\\ .0017\\ .0178\\ \hline \\ 0.937(.7\\ C^2/2\\ .2742\\ .0638\\ .0347\\ \end{array}$               | 373)<br><u>sum%</u><br>47.9<br>50.3<br>52.9<br>52.1<br>55.1<br>(.603)<br>764)<br><u>sum%</u><br>31.2<br>38.5<br>42.5           | MM12<br>h<br>3<br>4<br>6<br>1<br>1<br>MM12<br>h<br>1<br>3<br>4           | 2<br>T<br>60<br>45<br>30<br>180<br>2<br>T<br>180<br>60<br>45             | A<br>1315<br>0391<br>0499<br>.0430<br>A<br>.2460<br>1230<br>0693                  | B<br>.0472<br>1096<br>.0627<br>.0388<br>B<br>.1338<br>0086<br>1387                  | Var= 0.2<br>$C^{2}/2$<br>.0098<br>.0068<br>.0032<br>.0017<br>Var= 0.2<br>$C^{2}/2$<br>.0392<br>.0076<br>.0120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 202<br><u>sum%</u><br>23.9<br>40.4<br>48.3<br>52.4<br>317<br><u>sum%</u><br>39.1<br>46.6<br>58.6                 |
| CP3<br>subs<br>CP4<br>subs | Serie w<br>h<br>15<br>30<br>36<br>60<br>72<br>Serie w<br>h<br>30<br>15<br>45 | $     \frac{1}{12} \\             6 \\             5 \\           $ | A<br>.3355<br>.1940<br>.2192<br>.0542<br>.1737<br>A<br>.4804<br>2681<br>.2580 | Var=<br>B<br>.8735<br>.0778<br>0292<br>0234<br>.0379<br>Var=<br>B<br>.5636<br>2360<br>0537 | $\begin{array}{c} 0.956(.8\\ C^2/2\\ .4378\\ .0218\\ .0244\\ .0017\\ .0178\\ \hline \\ 0.937(.7\\ C^2/2\\ .2742\\ .0638\\ .0347\\ \end{array}$               | 373)<br><u>sum%</u><br>47.9<br>50.3<br>52.9<br>52.1<br>55.1<br>(.603)<br>764)<br><u>sum%</u><br>31.2<br>38.5<br>42.5<br>(.521) | MM12<br>h<br>3<br>4<br>6<br>1<br>1<br>MM12<br>h<br>1<br>3<br>4<br>6      | 2<br>T<br>60<br>45<br>30<br>180<br>2<br>T<br>180<br>60<br>45<br>30       | A<br>1315<br>0391<br>0499<br>.0430<br>A<br>.2460<br>1230<br>0693<br>.0373         | B<br>.0472<br>1096<br>.0627<br>.0388<br>B<br>.1338<br>0086<br>1387<br>0838          | $Var= 0.2$ $C^{2}/2$ $.0098$ $.0068$ $.0032$ $.0017$ $Var= 0.2$ $C^{2}/2$ $.0392$ $.0076$ $.0120$ $.0042$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 202<br><u>sum%</u><br>23.9<br>40.4<br>48.3<br>52.4<br>317<br><u>sum%</u><br>39.1<br>46.6<br>58.6<br>62.8         |
| CP3<br>subs<br>CP4<br>subs | Serie w<br>h<br>15<br>30<br>36<br>60<br>72<br>Serie w<br>h<br>30<br>15<br>45 | $     \frac{T}{12} \\             6 \\             5 \\           $ | A<br>.3355<br>.1940<br>.2192<br>.0542<br>.1737<br>A<br>.4804<br>2681<br>.2580 | Var=<br>B<br>.8735<br>.0778<br>0292<br>0234<br>.0379<br>Var=<br>B<br>.5636<br>2360<br>0537 | $\begin{array}{c} 0.956(.8\\ \text{C}^2/2\\ .4378\\ .0218\\ .0244\\ .0017\\ .0178\\ \hline \\ 0.937(.7\\ \text{C}^2/2\\ .2742\\ .0638\\ .0347\\ \end{array}$ | 373)<br>sum%<br>47.9<br>50.3<br>52.9<br>52.1<br>55.1<br>(.603)<br>764)<br>sum%<br>31.2<br>38.5<br>42.5<br>(.521)               | MM12<br>h<br>3<br>4<br>6<br>1<br>1<br>MM12<br>h<br>1<br>3<br>4<br>6<br>9 | 2<br>T<br>60<br>45<br>30<br>180<br>2<br>T<br>180<br>60<br>45<br>30<br>20 | A<br>1315<br>0391<br>0499<br>.0430<br>A<br>.2460<br>1230<br>0693<br>.0373<br>1644 | B<br>.0472<br>1096<br>.0627<br>.0388<br>B<br>.1338<br>0086<br>1387<br>0838<br>.0254 | $Var= 0.2$ $C^{2}/2$ $.0098$ $.0068$ $.0032$ $.0017$ $Var= 0.2$ $C^{2}/2$ $.0392$ $.0076$ $.0120$ $.0042$ $.0138$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 202<br><u>sum%</u><br>23.9<br>40.4<br>48.3<br>52.4<br>317<br><u>sum%</u><br>39.1<br>46.6<br>58.6<br>62.8<br>76.6 |
| CP3<br>subs<br>CP4<br>subs | Serie w<br>h<br>15<br>30<br>36<br>60<br>72<br>Serie w<br>h<br>30<br>15<br>45 | $     \frac{T}{12} \\             6 \\             5 \\           $ | A<br>.3355<br>.1940<br>.2192<br>.0542<br>.1737<br>A<br>.4804<br>2681<br>.2580 | Var=<br>B<br>.8735<br>.0778<br>0292<br>0234<br>.0379<br>Var=<br>B<br>.5636<br>2360<br>0537 | $\begin{array}{c} 0.956(.8\\ \text{C}^2/2\\ .4378\\ .0218\\ .0244\\ .0017\\ .0178\\ \hline \\ 0.937(.7\\ \text{C}^2/2\\ .2742\\ .0638\\ .0347\\ \end{array}$ | 373)<br>sum%<br>47.9<br>50.3<br>52.9<br>52.1<br>55.1<br>(.603)<br>764)<br>sum%<br>31.2<br>38.5<br>42.5<br>(.521)               | MM12<br>h<br>3<br>4<br>6<br>1<br>1<br>MM12<br>h<br>1<br>3<br>4<br>6<br>9 | 2<br>T<br>60<br>45<br>30<br>180<br>2<br>T<br>180<br>60<br>45<br>30<br>20 | A<br>1315<br>0391<br>0499<br>.0430<br>A<br>.2460<br>1230<br>0693<br>.0373<br>1644 | B<br>.0472<br>1096<br>.0627<br>.0388<br>B<br>.1338<br>0086<br>1387<br>0838<br>.0254 | $Var= 0.2 \\ C^{2}/2 \\ .0098 \\ .0068 \\ .0032 \\ .0017 \\ Var= 0.2 \\ C^{2}/2 \\ .0392 \\ .0076 \\ .0120 \\ .0042 \\ .0138 \\ extreme 0.2 \\ .0138 \\ extreme 0.2 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 \\ .0098 $ | 202<br><u>sum%</u><br>23.9<br>40.4<br>48.3<br>52.4<br>317<br><u>sum%</u><br>39.1<br>46.6<br>58.6<br>62.8<br>76.6 |

A Tabela 1 condensa informação da AH sobre as quatro primeiras CPs. As variáveis  $w_k(t)$  consideradas substituem os anos 2009 e 2013 da série original pelo ano médio da série. Foram selecionados harmônicos que excedem o nível de "ruído branco". À esquerda, indicam-se harmônicos com período de um ano ou menos (descrevendo o ciclo anual). Os dados à direita correspondem à AH da média móvel MM12; foram escolhidos os harmônicos indicados nas figuras 18C, 19C, 20C e 21C. Neste caso os harmônicos  $h\geq 15$  inexistem ou são descartáveis. As últimas colunas de cada grupo mostram o percentual de variância acumulado. Os números entre parênteses correspondem à variância dos harmônicos  $h\geq 15$  (ou seja, variância do ciclo anual) e ao percentual acumulado pelos harmônicos indicados. Observa-se que

Nas regiões com forte predominância da CP1, apenas 3 harmônicos (informando sobre o ciclo anual) poderão acumular até 74,2% da variância de w1 (83,9% das variações com período inferior a 1 ano); a variância restante existente em variações de médio e longo prazo vale 0,211 e 5 (dentre 14) harmônicos apenas acumularão 65% desse resto.

- A CP2 não tem um comportamento tão definido: 6 harmônicos significativos só acumulam 48,7% da variância e 21,1% dela corresponde a variações com período maior que um ano (com a variância correspondente acumulada em 77%). Este resultado sugere que nas regiões detectadas com elevada correlação com CP2, o sinal desta pode resultar fraco frente a variações de médio/longo prazo.
- As CP3 e CP4 podem apresentar as mesmas limitações. Apesar da regularidade do sinal anual de CP4 (com apenas 3 harmônicos), acumula apenas 42% da variância de *w*<sub>4</sub>.

Em síntese, nas regiões com CP1 predominante o ciclo anual de Kt está bem definido mas pode não exceder 80% da variância da CP1. As variações de médio/longo prazo têm um peso de 20% com nível de ruído considerável (35%). A influência delas pode ter um peso relativo maior na definição da CP2. Portanto, será conveniente delimitar (e corrigir) a adequada estimativa de GL em 2009 e 2013.

A Análise Harmônica fornece importante informação sobre a série temporal das CPs, mas para reproduzir a série temporal  $GL_k(t)$  do *k*-ésimo pixel, pode ser mais efetivo (isto é, mais acurado) um esquema direto descrito pelas eqs. (9) e (19), utilizando as séries  $w_m(t)$  e as cargas fatoriais locais  $f_{km}$ .

# 5. A CONSTRUÇÃO DE UMA SÉRIE TEMPORAL

A eq. (10) permite descrever a contribuição à variância local, baseada nas cargas fatoriais. A Figura 22 evidencia que a região central de R3 é descrita pela CP1 a nível de pelo menos 70% da variância, enquanto no Brasil (ao norte de Paraguai) e na região das Serra Andinas apenas alcança 20%. Incluindo as CPs 1-5, o Nordeste argentino e o Norte de Chile são descritos em 90%. Entretanto na região montanhosa ocidental (incluindo Chile) e em parte do litoral brasileiro não excedem 60%. O uso de 10 CPs consegue descrever quase toda a região com acumulação de mais de 90% da variância.

Claramente, as CPs 2+3 contribuem a preencher as regiões com CP1 fraca (em 40-50% e até mais de 70% numa sub-região brasileira). O uso das CPs 2-10 aprimora a aproximação, mas não excede 80% da variância. Depreende-se que as 10 primeiras CPs de R3 podem aproximar a série temporal de GL, mas que a região de Serras Andinas (Noroeste argentino) e o litoral de Santa Catarina, Paraná e São Paulo (Brasil) merecem estudos específicos centrados nessas sub-regiões. Havida conta dessas observações, as séries de GL serão representadas segundo

$$GL_{k}(t) = Go_{k}(t) \left[ \langle Kt_{k} \rangle + STD_{k} \sum_{m=1,10} f_{km} w_{m}(t) \right].$$
(21)

Em termos de tamanho da informação de R3 em 15 anos (2006-2020), isto configura 12 arquivos digitais com dimensão  $326\times651$ , para <Kt>, STD e 10 distribuições de carga fatorial, e um arquivo de texto de componentes principais, dimensão 180 (meses) × 10 (CPs). Uma vez revisado o quinquênio 2001-2005, pode-se esperar que a informação para 20 anos tenha o mesmo número de arquivos digitais e um arquivo de texto 240 (meses) × 10 (CPs).

As figuras 23 e 24 ilustram a qualidade das aproximações de ordem 1 e 10, em dois locais diferenciados. No Chaco argentino (nordeste do país) predomina a influência da CP1 e representa satisfatoriamente a série temporal de Kt. Já na região de sopé das Sierras Andinas (no exemplo, em Tucumán), a aproximação de ordem 1 é pobre e apresenta considerável dispersão com relação a Kt. A aproximação de ordem 10 se ajusta à relação 1:1. As contribuições 1 e 1-10 para a variância local de Kt são 80,6% e 92,2% no caso do Chaco; 30,6% e 85,0% no caso de Tucumán.

![](_page_30_Figure_0.jpeg)

**Figura 22**. Contribuição acumulativa à variância local. Esquerda: CP1, CPs 1-3, 1-5 e 1-10. Direita: CP2, CPs 2-3, 2-5 e 2-10.

![](_page_31_Figure_0.jpeg)

**Figura 23**. Simulação de série temporal para dois locais, localizados no Chaco argentino e no sopé de serra em Tucumán, Argentina. Series temporais do modelo GL (cinza), aproximação ordem 1 (verde) e ordem 10 (vermelho).

![](_page_31_Figure_2.jpeg)

Figura 24. Diagramas de dispersão para as series simuladas Chaco e Tucumán, aproximações 1 e 10.

# 6. CLIMA DA RADIAÇÃO GLOBAL NA REGIÃO NAR

A distribuição geográfica da radiação solar global estimada pelo modelo GL nas escalas anual, mensal e interanual (seção 2), evidencia a alta variabilidade espaço-temporal dessa variável na R3.

Na escala anual, a radiação solar média (Fig. 3) mostra valores mínimos  $(150 \pm 40 \text{ Wm}^2)$  no litoral do Brasil, e os máximos (>220 ± 30 Wm<sup>2</sup>) no noroeste do estado de São Paulo, Mato Grosso do Sul, Paraguai, norte da Argentina, e ao longo da costa oeste da América do Sul.

O efeito combinado das variações de nebulosidade e da geometria de iluminação do sol define o ciclo sazonal da radiação solar na R3, com valores médios mensais de 100-200 Wm<sup>-2</sup> em julho e de 200-300 Wm<sup>-2</sup> em janeiro (Fig. 4). O ciclo sazonal anual da radiação é mais pronunciado sobre a área central do Paraguai e da Argentina, com radiação média mensal da ordem de 150 Wm<sup>-2</sup> em junho e 300 Wm<sup>-2</sup> em janeiro.

Na escala interanual (Fig. 3c), as regiões próximas às costas da América do Sul apresentam maiores valores de coeficiente de variação (CV ~0,08) do que na região central da R3 (CV~0,04). Essa característica mostra que as regiões litorâneas têm maiores flutuações de radiação, devido ao papel dos oceanos nas condições de tempo.

![](_page_32_Figure_5.jpeg)

**Figura 25** - Circulação de Baixos Níveis (850 hPa) em m/s e transporte vertical integrado de umidade (mgs-1 kg-1) para média climatológica de verão (NDJF, A) e inverno (MJJA, B), e para compostos quando atuam os Jatos de Baixos Níveis nas estações de verão (NDJF, C) e inverno (MJJA, D) [Figura adaptada de Marengo et al., 2004].

#### 6.1 Relação entre regimes de nebulosidade e sistemas meteorológicos

A Figura 25 permite melhor interpretar qualitativamente o comportamento do Kt na região R3.

Nos meses de verão (NDJF, Fig 12a), a climatologia de Kt mensal define dois setores distintos de nebulosidade. No primeiro setor, localizado na costa oeste da América do Sul e na região central da R3, os valores de Kt são elevados caracterizando um regime meteorológico de prevalência de céu claro. As áreas circunvizinhas apresentam valores reduzidos de Kt (Kt<0.6), definindo um segundo regime com alta frequência de nebulosidade.

As figuras 25 A e C permitem melhor apontar os sistemas meteorológicos que atuam nestes dois setores, sendo portanto responsáveis pela distribuição espacial do Kt neste período. Durante o verão, os movimentos subsidentes do Anticiclone Subtropical do Pacífico Sul (ASPS na Figura 25A) inibem a formação de nebulosidade em grande parte da R3, resultando em valores de Kt médio mensal superior a 0.6 sobre Paraguai e norte da Argentina, e sobre a costa oeste da América do Sul. Adicionalmente, o posicionamento mais austral do ASPS durante o verão e a topografia dificultam que sistemas transientes avancem sobre o continente e formem nuvens, reforçando assim as condições persistentes de céu claro em grande parte da Argentina e Paraguai Neste período, os sistemas transientes entram pela costa oeste da AMS em latitudes mais altas (40°S – 60°S, Figura 25A: "Entrada de Sistemas Transientes", ST), avançando para oeste em direção ao oceano Atlântico. Muitos desses sistemas avançam em direção ao Uruguai e Sul do Brasil antes de chegar ao oceano, mas poucos atingem o norte da Argentina. Sendo assim, o posicionamento da ASPS e a pouca frequência dos sistemas transientes atuando sobre o setor centro-norte da R3, caracterizam um setor de baixa frequência de nebulosidade.

Em contraste, durante o período de novembro a fevereiro o sistema de monção é responsável pela formação de nuvens sobre a região tropical e subtropical da AMS. Os ventos alísios do Atlântico Tropical Norte (AL, Fig. 25A) adentram no continente em latitudes equatoriais, passam sobre a Amazônia e adquirem maior quantidade de umidade devido à evapotranspiração da floresta. Ao encontrarem a barreira topográfica ocidental, os ventos alísios seguem paralelamente aos Andes em direção ao Sul/Sudeste do Brasil. Sendo assim, o transporte de umidade dos trópicos pelos alísios explica grande parte dos valores de Kt inferior a 0,5 sobre os estados brasileiros.

Por outro lado, os valores baixos de Kt sobre o leste dos Andes durante o verão (Fig. 12 a) tem a contribuição adicional de outro sistema meteorológico que atua nesse setor: a baixa do Chaco (BC, Fig. 25A). Esta baixa relativamente fraca e muito alongada e estende-se meridionalmente do lado oriental dos Andes, mais especificamente entre a Bacia Amazônica e o norte da Argentina. A BC é responsável pela convergência de umidade em baixos níveis e pela formação de nuvens, principalmente sobre a Bolívia e o noroeste da Argentina, onde encontram-se valores de Kt em torno de 0,5.

Durante os meses de inverno os valores de Kt em torno de 0.5 (MJJ, Figura 12c) apresentam uma distribuição espacial mais homogênea do que nos meses quentes sobre o setor central da R3. A ASPS está mais a norte, permitindo a entrada de frentes e ciclones pela costa oeste da América do Sul (Figura 25B, ver ASPS e a "entrada dos ST"). Os sistemas transientes avançam sobre o continente até baixas latitudes gerando convecção. Durante o inverno os sistemas frontais atuam com alta frequência no sul do Brasil desviando-se para o oceano, podendo poucas vezes atingir o Sudeste e o sul da Bahia. Adicionalmente, o posicionamento da alta subtropical do Atlântico Sul (ASAS, Fig 25B) próximo ao continente nos meses de inverno, gera movimentos subsidentes sobre o sudeste brasileiro impedindo a formação de nuvens. Apesar de ainda ocorrer o transporte de umidade da Amazônia para altas latitudes durante o inverno, o transporte de umidade de

origem oceânica, principalmente sobre a Bacia do Paraná-Prata, é responsável pelos valores baixos de Kt.

No período de transição entre a primavera e o verão (ASO. Fig. 12 d), grande parte da R3 (com exceção do Rio Grande do Sul, litorais de Santa Catarina e Paraná) apresenta valores de Kt acima de 0,6 o que indica baixa frequência de nebulosidade, devido ao efeito de bloqueios atmosféricos que são comuns durante esse período.

O litoral brasileiro destaca-se em relação às demais regiões (Figura 12 a - d) pois os valores de Kt são inferiores à 0,45 ao longo de todo o ano, indicando que essa é uma região que apresenta alta ocorrência de nebulosidade durante todo o ano. Essa característica deve-se à atuação de diversos sistemas, como o sistema de monção no verão, passagens de sistemas frontais e de baixa pressão durante inverno e verão. Adicionalmente, a circulação regional (como o caso da circulação de brisa marítima) ao longo de todo o ano proporciona o transporte de umidade oceânica para o continente, bem como a formação de nebulosidade sobre o litoral e parte do setor leste das planícies costeiras do Brasil.

## 6.2 Análise em componentes principais da série de Kt

Na seção 4, a ACP aplicada à série de Kt indicou que 71 % da variância local é determinada pelas duas primeiras componentes, sendo que a CP1 apresenta alta e correlação (negativa) em grande parte da R3 mas tem peso menor no Sudeste e no litoral Sul do Brasil mas também na região ocidental dos Andes. Nestas regiões, a CP2 possui correlação positiva e significativa. A análise harmônica das CPs sugere um sinal anual predominante em ambas as componentes; porém, como já apontado anteriormente, a CP2 apresenta flutuações mais complexas. As componentes CP1 e CP2 mostram que, em primeira instância, o padrão de nebulosidade pode ser descrito em termos de dois regimes (Fig.14). O primeiro regime está associado à CP1 e a nebulosidade é formada no inverno principalmente pela passagem de sistemas ciclônicos e de frentes, enquanto que a CP2 tem maior correlação no setor noroeste da R3, onde a alta frequência de nebulosidade está associada à circulação de monção durante o verão.

As componentes CP3 e CP4 (Fig. 15) mostram correlações significativas onde os efeitos orográficos e do oceano impactam a nebulosidade regional. A CP3 mostra um sinal de dipolo, configurado entre a região dos Andes e do Oceano Atlântico próximo ao litoral de Santa Catarina e Oceano Atlântico. Esse sinal pode estar associado a eventos de jatos de baixos níveis, que amplificam o transporte de umidade em direção ao Sul e Sudeste do Brasil (Figura 25 C). Adicionalmente, a região oceânica próxima ao litoral de SC apresenta forte correlação positiva da CP3, coincidindo com a região ciclogenética (Hoskins e Hodges 2005). Na análise temporal da CP3, verifica-se uma troca de sinal (negativo para positivo) durante a primavera, quando há um aquecimento das águas oceânicas e maior ocorrência de processos de bloqueios, fatores importantes para as modulações das condições meteorológicas nesta região.

A componente principal CP4 apresenta sinal de dipolo representativo na região dos Andes, com sinal positivo do lado oeste e negativo a leste dos Andes. Esse dipolo confirma que parte da variabilidade da nebulosidade está associada aos efeitos orográficos.

A análise de Fourier (seção 4.1) mostrou que todas as quatro primeiras componentes principais apresentam oscilações na escala de meses, assim como variabilidade superior a um ano, indicando que fenômenos meteorológicos de baixa frequência, tais como o ENSO e Madden Julian, entre outros, também influenciam nos modos de variabilidade de Kt. Uma análise mais detalhada deve ser realizada no futuro.

Apesar da descrição meteorologia qualitativa, a análise dos campos mensais de radiação e Kt, bem como a inspeção das componentes principais e da série de Fourier permitem concluir que os dados do GL conseguem descrever a alta variabilidade espacial e temporal da cobertura de nuvens sobre a região R3, mostrando a boa representatividade climatológica do produto GL. Estudos futuros incluindo outros tipos ou fontes de dados independentes de nuvens e/ou outros parâmetros climáticos poderão melhor descrever quantitativamente a relação entre radiação do GL, nuvens e sistemas meteorológicos. A aplicação de análise de clusters e a construção de séries sazonais poderão ainda contribuir com o avanço na análise meteorológica da radiação. Além de estudos climáticos, sugere-se que o produto GL seja explorado na forma de estudos de caso, onde os padrões de radiação sejam quantificados diante dos fenômenos sinóticos e dinâmicos típicos que atuam na região.

# 7. Considerações finais

A partir de uma perspectiva de colaboração entre instituições de Brasil e Argentina no âmbito da radiação solar regional (como recurso energético e como variável climática), este documento explora a existência de informação *a prior*i numa região definida como R3: Grande Norte Argentino, ou Norte Argentino Estendido. Os estudos desenvolvidos poderão usufruir de dados de redes solarimétricas no Norte do Chile, Norte da Argentina e Sul/Sudeste do Brasil, e de estimadores baseados em imagens satelitais (modelo GL versão 1.2 com resolução espacial de 0,04°, além de outros).

Este Relatório de Pesquisa realiza uma primeira análise, de caráter climatológico, do regime de irradiância solar na região R3. Do ponto de vista diagnóstico a Análise em Componentes Principais (ACP) da série de médias mensais no período 2006-2020 sugere a conveniência de analisar o "índice de brilho" Kt, antes que a própria irradiância (fortemente ligada ao ciclo anual da declinação solar). Permite detectar a presença de duas e até três variáveis temporais (CPs), em geral com ciclo anual predominante, a primeira delas com influência marcante na planície predominante no Sul/Sudeste brasileiro, Centro/Nordeste argentino e Paraguai, e região costeira chilena. Uma segunda variável (provavelmente em conjunto com a CP3) tem peso menor mas uma influência marcante no sopé (região oriental) das Serras Andinas além de uma região zonal estendida sobre o Brasil (ao norte de Paraguai) e até o Atlântico. A conexão dinâmica dessas regiões com a dinâmica da circulação atmosférica no continente e oceano merece estudos subsequentes, provavelmente com dados em escala temporal mais detalhada e concentrando análises em sub-regiões de R3. O modelo GL mostra-se uma ferramenta valiosa, pela sua resolução espacial e temporal e pela conexão da irradiância à superfície com a nebulosidade e circulação atmosférica.

A dramática redução da massa de dados necessária para produzir a mesma informação e a recuperação dos dados originais dentro de uma acurácia razoável, propiciada pela ACP, é de interesse especial se dados em escala temporal menor serão utilizados.

Estudos futuros incluem a validação e aperfeiçoamento do modelo GL por comparação com dados de superfície. A primeira consequência será a melhor descrição da radiação solar regional, com notória falta de dados de superfície. Neste contexto, uma ferramenta adicional de grande valia será um Banco de Dados de Radiação Solar, produto da colaboração interinstitucional na região.

# REFERÊNCIAS

Bloomfield, P. (1967). Fourier Analysis of Time Series: An Introduction. Wiley, 257 pp.

- Ceballos, J.C., AC.S. Porfirio, P.A. Oricchio, G. Posse (2022). Characterization of the annual regime of surface solar irradiance over Argentine Pampean Region using GL 1.2 satellite-based data. <u>Renewable Energy</u> 194: 526-537.
- Ceballos, J.C., J.D. Forciniti, M.L. Molina (2022). Algunas características del régimen de radiación solar en el Noroeste Argentino, período 2017-2021. In XLIV Reunión ASADES 2022, Catamarca, Argentina. Publicado na <u>Revista AVERMA v. 26, 2022</u>, p. 345-356.
- Copper, J.K., A.G. Bruce (2017). Interannual variability of the solar resource across Australia. In: Asia-Pacific Solar Research Conference, <u>Proceedings</u>. Acesso em maio 2023.
- Forciniti, J.D., J.C. Ceballos, A.M. Leal, M.L. Soulé Gómez (2022a). Relación entre datos de radiación solar global estimados por satélite y generados por la red de estaciones meteorológicas de la provincia de Tucumán - República Argentina. In XIV Congremet, Buenos Aires, Argentina, Novembro 2022. Libro de Resúmenes Extendidos, p. 658.
- Forciniti, J.D., J.C. Ceballos, M.L. Leal, A.M. Martín (2022b). Comparación de radiación solar estimada por satélite y medida por una red meteorológica automática en Tucumán – Argentina. In XLIV Reunión ASADES, Catamarca, Argentina. In: <u>Acta de la XLIV Reunión de Trabajo</u>, Volumen 9 año 2022, p. 177.
- Grossi Gallegos, H, R. Lopardo (1998). Spatial variability of the global solar radiation obtained by the solarimetric network in the Argentine Pampa Humeda. *Solar Energy* 40: 397-404.
- Gueymard, C.A., S.M. Wilcox (2011). Assessment of spatial and temporal variability in the US solar resource from radiometric measurements and predictions from models using ground-based or satellite data. <u>Solar Energy</u> 85:1068-1084.
- Hoskins, B.J.; K.I. Hodges (2005). A new perspective on the southern hemisphere storm track. Journal of Climate, v. 18, p. 41084129, 2005. <u>https://doi.org/10.1175/JCLI3570.1</u>
- Johnson, R.A., D.N. Wichern (2007). Applied Multivariate Statistical Analysis, 6th edition, pp. 773 (Prentice Hall).
- Kariuki, B.W., T. Sato (2018). Interannual and spatial variability of solar radiation energy potential in Kenya using Meteosat satellite. <u>*Renewable Energy*</u> 116: 88-96.
- Marengo, JA; W.R. Soares; C. Saulo; M. Nicolini (2004). Climatology of the low-level jet east of the Andes as derived from the NCEP–NCAR reanalyses: Characteristics and temporal variability. Journal of climate 17 (12), 2261-2280. DOI: <u>https://doi.org/10.1175/1520-442(2004)017<2261:COTLJE>2.0.CO;2</u>
- Paltridge, G.W., C.M.R. Platt (1976). *Radiative Processes in Meteorology and Climatology*. Elsevier Sci. Pub. Co., 318 pp.
- Porfirio, A.C.S., J.C. Ceballos, J.M.S. Brito, S.M.S. Costa (2020). Evaluation of global solar irradiance estimates from GL1.2 satellite-based model over Brazil using an extended radiometric network. <u>*Remote Sensing*</u> 12, 1331.

# ANEXOS

- A1. Irradiância média diária no topo da atmosfera.
- A2. Arquivos de ACP e valores médios em 2006-2020, região R3.
- A3. Rede de locais na região R3.

### A1. Irradiância média diária no topo da atmosfera.

Ângulo zenital Zo do Sol é o ângulo formado pela linha de visada ao Sol com a vertical local. Demonstra-se que  $(^{6})$ 

 $\cos Zo = \cos \delta \cdot \cos \phi \cdot \cos h + \sin \delta \cdot \sin \phi$ 

Aqui,  $\cos \delta = \operatorname{declina}_{\tilde{a}}$ o do Sol;  $\phi = \operatorname{latitude local}$ ;  $h = \operatorname{angulo horário} = \operatorname{angulo que a Terra deve girar para o Sol passar pelo meridiano local (positivo, se antes do meio-dia; negativo, se após meio-dia).$ 

(A1.1)

Conceitos básicos (6):

- 1. O Sol tem ângulo zenital Zo=90° ao amanhecer e no por-do-sol. Para fins práticos, não consideramos efeitos da refração de raios solares e consideramos a passagem do *centro do sol* pelo horizonte.
- 2. Ao <u>meio-dia local</u>, o Sol passa pelo Norte geográfico, ou seja, pelo meridiano local. Não confundir com as 12 horas de relógio (<u>meio-dia legal</u>)!
- 3. A Terra gira 15% hora, sendo geograficamente dividida em 24 fusos de 15°.
- 4. A hora universal ou UTC define-se de acordo com o meridiano de Greenwich (longitude λ=0°). Esta hora vale dentro de um fuso horário de 15° (0±7,5°) para Greenwich, e sucessivamente (avançando para oeste) 15W±7,5°; 30W±7,5°; 45W±7,5°;60W±7,5°; ... os quais, na hora t UTC, têm as horas legais t-1, t-2, t-3, t-4, ... Usualmente, a hora legal de um país é definida pelo fuso onde se encontra sua capital. Por exemplo Brasilia (47° 49′W → -47,817°) está no fuso de 45°W (fuso -3) e terá hora legal (t-3) com relação à UTC (<sup>7</sup>).
- 5. Dado um local que se rege pelo fuso f a oeste de Greenwich (longitude central λo= 15 f, sendo f<0), com hora legal to, um local na longitude λ teria um horário real deslocado de Δts = (λ λo)/15 horas para representar sua hora solar ts, sendo ts= to (λ λo)/15. Por exemplo, Salvador (38° 25′W→ -38.417°) teria uma hora solar ts = to (-38,417 + 45)/15 = to+ 0,4389 horas, ou seja, o Sol passa pelo meridiano local 26,33 minutos antes do meio-dia legal. Na própria cidade de Brasília, o meio-dia solar verificar-se-ia na hora legal to= 12 horas + 11.27 minutos.</p>
- 6. Para estimar a hora solar, uma correção adicional faz-se necessária: a equação do tempo Δtsol, devida a que a Terra não tem velocidade constante ao longo de sua órbita (gira mais rápido em torno do Sol quando se encontra mais próxima do Sol; o efeito se anula ao completar uma órbita). Δtsol é uma função do dia juliano.

Assim, a hora solar computa-se como

ts= to –  $(\lambda - \lambda o)/15 + \Delta sol;$ 

(A.1.2)

sendo  $\Omega = 2\pi/86400$  a velocidade angular da Terra, e ts a hora solar local, o ângulo que o planeta deve girar para verificar-se o meio-dia local será

<sup>&</sup>lt;sup>6</sup> Para maiores detalhes, ver textos de Meteorologia. Referências no fim deste Anexo.

<sup>&</sup>lt;sup>7</sup> Todavia, países muito extensos em longitude, como Brasil, Estados Unidos ou Rússia, podem ter vários fusos adotados como hora legal. Manaus (59°55′) tem hora legal segundo o fuso 4. Ver <u>figura</u> no Google. Existem exceções à norma: por exemplo Buenos Aires (58°22′) está no fuso 4 mas adota o fuso 3 para Argentina. Ainda, de acordo com conveniência climática, um país pode adotar uma hora legal de inverno ou de verão deslocada de 1 hora com relação à legal "padrão".

$$h = (12 - \mathrm{ts}) / \Omega. \tag{A.1.3}$$

Esta expressão permite avaliar o ângulo horário h na eq. (A.1.1) (<sup>8</sup>). A expressão para cosZo permite avaliar a duração teórica do período diurno: ao amanhecer é Zo=  $\pi/2$ , de forma que o ângulo H girado pela Terra entre amanhecer e meio-dia solar e a duração formal Tdia do período diurno (denominada de *insolação teórica*) farão

$$\cos H = - \operatorname{tg} \phi \cdot \operatorname{tg} \delta, \qquad \text{Tdia} = 2 H / \Omega. \qquad (A.1.4)$$

A irradiação no topo da atmosfera deverá ser

$$Qo = \int_{[0 \text{ Tdia}]} S \cos Zo \, dt = 2 S \int_{[0 \text{ H}]} \cos Zo \, dh/\Omega.$$
(A.1.5)

O valor médio da irradiância (considerado um dia completo, com duração T =  $86400^{\circ}$ ) leva à expressão

$$Go = Qo/T = (S/\pi) (\cos\varphi \cdot \cos\delta \cdot \operatorname{sen}H + \operatorname{sen}\varphi \cdot \operatorname{sen}\delta \cdot H), \qquad (A.1.6)$$

Note-se que H se mede em *radianos*. Nesta equação, a constante solar So foi corrigida por distância Terra-Sol:  $S = So \cdot r2sun$ .

Os parâmetros declinação  $\delta$ , correção **r2sun** por distância Terra-Sol, equação do tempo  $\Delta$ tsol, podem ser calculados com a função *fastrododia* em linguagem Octave, no fim deste Anexo.

#### Referências

- Liou, K.N. (2002). An Introduction to Atmospheric Radiation., 2<sup>nd</sup> Edition. Academic Press, 577 p. (cap. 2).
- Paltridge, G.W., C.M.R. Platt (1976). *Radiative Processes in Meteorology and Climatology*. Elsevier Sci. Pub. Co., 318 pp. (cap. 3)
- Varejão-Silva, M.A. (2006). <u>Meteorologia e Climatologia</u>. 2<sup>a</sup> Edição digital, Universidade Federal de Alagoas, Brasil (cap. 1).
- Vianello, R.L., A.R. Alves (2000). Meteorologia Básica e Aplicações. 2ª Edição. Editora Universidade Federal de Viçosa, Brasil. (cap. 3). Acessível em <u>SCRIBD</u>.

<sup>&</sup>lt;sup>8</sup> Atenção ao uso de unidades: (12-ts) deve ter unidades coerentes com  $\Omega$  (radianos/segundo).

```
Programas GoTOA.m e fastrododia.m devem ser gravados no mesmo diretorio
Rodar programa GoTOA
%PROGRAMA GoTOA.m Octave - AVALIA radiação no topo da atmosfera no dia 20.06.2023
  sobre São Paulo
site= 'Sao Paulo'; longitudeOESTE= [46 34]; latitudeSUL= [23 39]; %graus minutos
  ano= 2023; mes= 06; dia= 20;
8 -----
yR= -(latitudeSUL(1) + latitudeSUL(2)/60); %graus decimais
anomesdia= ano*1e4+mes*100+15;
astro= fastrododia(anomesdia);
declin= astro(1);
                                        %radianos
r2sun= astro(3); So= 1357; S= So*r2sun;
H= acos (-tand(yR) *tan(declin));
                                        %radianos
Go= (S/pi)* (cos(declin)* (cosd(yR).*sin(H)) + sind(yR)*sin(declin));
§ -----
disp([site ' - dia ' num2str(anomesdia)]);
disp(['irradiancia media no TOA = ' num2str(Go) ' Wm-2']);
% FIM do programa
% funcao (subrotina) fastrododia.m avalia parametros astronomicos
function astro= fastrododia(anomesdia)
   %versao corrigida abril 2017
   % calcula declinacao (radianos)e equacao do tempo (horas)
   %a partir da data anomesdia [yyyymmdd]
   dia0= [0 31 59 90 120 151 181 212 243 273 304 334];
   diasdoano= 365;
   ano= floor(anomesdia/10000); mesdia= mod(anomesdia,10000);
   mes= floor(mesdia/100); dia= mod(mesdia,100);
   if mod(ano, 4) == 0
       dia0= dia0 + [0 0 1 1 1 1 1 1 1 1 1];
       diasdoano= diasdoano+1;
   end
   diajul= dia0(mes) + dia;
   teta = 2 * pi * (diajul-1) / diasdoano; %radianos
   delta = .006918 - .399912 * cos(teta) + .070257 * sin(teta) - ...
      .006758 * cos(2 * teta) + .000907 * sin(2 * teta) - ...
      .002697 * cos(3 * teta) + .00148 * sin(3 * teta); %radianos
   dtempo= .000075 + .001868* cos(teta) - .032077* sin(teta) - ...
       .014615 * cos(2 * teta) - .040849* sin(2*teta); %radianos
   dt= dtempo*180/(pi*15); %horas
   r2sun = 1.00011 + .034221 * cos(teta) + .000128 * sin(teta) +...
       0.000719* cos(2*teta) + 0.000077* sin(2*teta);
   %algoritmos Paltridge & Platt 1976
   %r2sun= (Do/D)^2
   astro= [delta; dt; r2sun];
end
```

### A2. Arquivos de ACP e valores mensais em 2006-2020, região R3

No que segue, apresenta-se programa de leitura de produtos da ACP e recuperação de séries temporais.

Na seção Dados da página G-STAR (<sup>9</sup>) estão incluídos o presente Relatório e os arquivos necessários para descrever Kt e GL na região R3 no período 2006-2020 (Nt= 180 médias mensais). As matrizes de dados têm uma resolução espacial 0,04° (latitude), 0,04° (longitude), NL= 326 linhas, NC= 651 colunas.

- Ktmedio.bin combina valor médio Ktm e desvio padrão SDKt. Dimensão (NL,NC,2).
- FKt.bin são cargas fatoriais para Ncp=10 componentes principais. Dimensão (NL,NC,Ncp).
- CPKt.txt é arquivo de texto contendo a matriz de componentes principais. Dimensão (Nt, Ncp).

Alocar os 3 arquivos e os programas SimulaSerieGL.m, fSimulaKt.m, fastrododia.m no mesmo diretório (por exemplo, R3) (<sup>10</sup>).

O programa SimulaSerieGL.m recebe uma lista de Ns sítios com coordenadas geográficas [lon lat] e de nomes dos locais, e constrói matriz SimKtG [Nt×(1 + 3Ns)]: Nt= 180 meses; primeira coluna tempo (1:180), e a cada 3 colunas os dados [Go, Ktsim1, Ktsim] para os Ns sítios.

Contém 2 opções:

- Opção 0: grava SimKtG como arquivo Ktsimul.txt;
- Opção 1: exibe um gráfico duplo, com as séries de aproximações de ordem 1 e cumulativa 1-10, para 1) Kt; 2) GL.

![](_page_41_Figure_11.jpeg)

Exemplo de recuperação de série de Kt e de GL, período 2006-2020

<sup>&</sup>lt;sup>9</sup> URL de acesso: <u>http://pururuca.cptec.inpe.br/gstar/GSTAR\_principal.html</u>

<sup>&</sup>lt;sup>10</sup> Os programas estão em linguagem Octave. Matrizes são gravada (e lidas) como sequência de <u>colunas</u>.

```
%Programa SimulaSerieGL
graficos=1; %=0 grava serie em *.txt, =1 apenas sequencia gráficos
% ----- sitios
lonlat= [-60 -26; -65.8 -26.5; -54.0133 -31.3478; -49.0666 -22.3166];
sites= {'Chaco'; 'pedemonte Tucuman'; 'Bagé'; 'Bauru'};
[Nsites, Ngeo] = size(lonlat);
% ----- area R3
V= [-72 -46 -32 -19]; dlat= .04; dlon= .04;
NC= floor((V(2)-V(1))/dlon)+1; NL= floor((V(4)-V(3))/dlon)+1;
% _____
%Leitura Ktmedio, F, CP
zeta= load('CPKtR3.txt');
[Nt, Ncp] = size(zeta);
arg= 'Ktmedio.bin';
FID= fopen(arq, 'r');
A= fread(FID, 'real*4');
Ktmedio= reshape(A, [NL, NC, 2]);
clear A
arq= 'FKt.bin';
FID= fopen(arq, 'r');
A= fread(FID, 'real*4');
F= reshape(A, [NL, NC, Ncp]);
clear A
§ _____
UKt= fSimulaKt(lonlat, Ktmedio, zeta, F, V);
8 -----
tempo= (1:Nt)';
SimKtG= zeros(Nt, 1+3*Nsites);
SimKtG(:,1) = tempo;
for s=1:Nsites
   Go= zeros(Nt,1); lat= lonlat(s,2);
   for mes= 1:12
     anomesdia= 2006*1e4+mes*100+15;
     astro= fastrododia(anomesdia);
     declin= astro(1);
     r2sun= astro(3); S= 1357*r2sun;
     H= acos(-tand(lat)*tan(declin));
     Goo= (S/pi)* (cos(declin)* (cosd(lat).*sin(H)) + sind(lat)*sin(declin));
     Go(mes:12:end) = Goo;
   endfor
   SimKtG(:,3*s-1:3*s+1)= [Go UKt(:,2*s-1) UKt(:,2*s)];
endfor
% _____
switch graficos
case 0
 save 'Ktsimul.txt' SimKtG -ascii
case 1
  for s=1:Nsites
   lonlatn= lonlat(s,:); lat= lonlat(s,2);
   site= char(sites(s));
   sitio= [site ' LonLat [' num2str(lonlatn) ']'];
   tempo= UKt(:,1);
   Ktsim1= UKt(:, 2*s); Ktsim= UKt(:, 2*s+1);
  § _____
```

```
figure(11); clf
     subplot (2, 1, 1)
     %po= plot(tempo, Kt, '-s', 'MarkerSize', 3, 'Color', gris); hold on
     p10= plot(tempo, Ktsim, '-r'); hold on
     p1= plot(tempo, Ktsim1, '-b'); hold on
     title(['simulacao de Kt ' sitio], 'FontSize', 12);
     xlabel('tempo (meses)');
     legend([p1 p10], 'aprox. 1', 'aprox. 1-10', ...
        'Location', 'SouthEast');
     grid
     subplot(2,1,2)
     Go= SimKtG(:, 3*s-1);
     GLsim1= Go.*Ktsim1; GLsim10= Go.*Ktsim;
     p1= plot(tempo, GLsim1, '-b'); hold on
     p10= plot(tempo, GLsim10, '-r'); hold on
     title(['simulacao de GL ' sitio], 'FontSize', 12);
     xlabel('tempo (meses)');
     legend([p1 p10], 'aprox. 1', 'aprox. 1-10', ...
       'Location', 'SouthEast');
     axis([0 200 100 350]);
     grid
 pause
 endfor
endswitch
 %function avalia serie temporal Kt para varios locais
function U= fSimulaKt(sitio, Ktmedio, zeta, F, V)
  [NL,NC,Ncp] = size(F);
  [Nt, Nz] = size(zeta);
  [Nsitios, Nco] = size(sitio);
 Ktm= Ktmedio(:,:,1); SD= Ktmedio(:,:,2);
  § _____
U= zeros(Nt, 1+2*Nsitios);
latini= V(3); lonini=V(1); dlat= .04; dlon=.04;
tempo= (1:Nt)'; U(:,1)= tempo;
for s=1:Nsitios
 lon= sitio(s,1); lat= sitio(s,2);
 lin= floor((lat - latini)/dlat)+1;
  col= floor((lon-lonini)/dlon)+1;
 %Kt= squeeze(KtR(lin,col,:));
 Kto= Ktm(lin,col); SDo= SD(lin,col);
 Fp= squeeze(F(lin, col, :));
 Ksim= zeros(Nt,1);
 for n=1:10
    Ksim= Ksim+Fp(n).*zeta(:,n);
    switch n
      case 1
        Ksim1= Ksim;
    endswitch
  endfor
 Ktsim= Kto + SDo* Ksim;
 Ktsim1= Kto+ SDo* Ksim1;
 U(:, 2*s:2*s+1) = [Ktsim1, Ktsim];
endfor
8 _____
```

```
end %end function
```

#### LISTA COMPLETA región R3 202305

| %ID   | lat                | lon               | alt   | dono | Idlocal % | local                 | prov/estado | pais      | rede      | 9 | %ID   | lat      | lon      | alt  | dono | Idlocal | % local               | prov/estado    | pais      | rede      |
|-------|--------------------|-------------------|-------|------|-----------|-----------------------|-------------|-----------|-----------|---|-------|----------|----------|------|------|---------|-----------------------|----------------|-----------|-----------|
| 29004 | -26.942            | -65.335           | 437   | 1    | 29004 %   | Tucumán               | TU          | Argentina | ARGENTINA | : | 29071 | -22.521  | -68.8    | 667  | 1    | 29071   | % Tartagal            | Salta          | argentina | ARGENTINA |
| 29005 | -24.784            | -65.415           | 1171  | 1.3  | 1 %       | Salta                 | Salta       | Argentina | INENCO    | : | 29072 | -22.8047 | -65.8222 | 3459 | 1.4  | 29072   | % AbraPampa           | JU             | -999      | INTA      |
| 29006 | -27.446            | -58.997           | 48    | 1    | 29006 %   | Resistencia           | СН          | Argentina | ARGENTINA | : | 29100 | -19.58   | -65.75   | 3935 | 2    | 29100   | % Potosí              | -999           | Bolívia   | BOLÍVIA   |
| 29007 | -31.83             | -60.52            | -999  | 1.1  | 29007 %   | Paraná                | ER          | Argentina | GERSOL    | : | 29101 | -20.128  | -67.632  | -999 | 2    | 29101   | % Uyuni               | -999           | Bolívia   | BOLÍVIA   |
| 29008 | -31.43             | -64.18            | 438   | 1    | 29008 %   | Córdoba               | СВ          | Argentina | ARGENTINA | : | 29107 | -20.005  | -63.527  | 797  | 2    | 29107   | % Camiri              | BV             | Bolívia   | BOLÍVIA   |
| 29011 | -31.53             | -68.53            | 650   | 1    | 29011 %   | San Juan              | SJ          | Argentina | ARGENTINA | : | 29108 | -18.927  | -63.404  | 471  | 2    | 29108   | % Abapo               | BV             | Bolívia   | BOLÍVIA   |
| 29014 | -31.63             | -60.7             | 20    | 1    | 29014 %   | Santa Fe              | SF          | Argentina | ARGENTINA | : | 29151 | -32.03   | -52.09   | 13   | 3    | 29151   | % Rio Grande          | RS             | Brasil    | BRASIL    |
| 29023 | -22.1              | -65.583           | 3440  | 1    | 29023 %   | LaQuiaca              | JU          | Argentina | ARGENTINA | : | 29152 | -21.637  | -47.79   | -999 | 3    | 29152   | % SRita PassaQuatr    | o SP           | Brasil    | BRASIL    |
| 29026 | -28,2395           | -56,1886          | -999  | 1    | 29026 %   | Corrientes            | CR          | Argentina | ARGENTINA | : | 29153 | -22.86   | -48.43   | 637  | 3    | 29153   | % Botucatu            | SP             | Brasil    | BRASIL    |
| 29027 | -24.4              | -65.7             | 3340  | 1.3  | 2 %       | ElRosal               | Salta       | Argentina | INENCO    | : | 29154 | -23.65   | -46.61   | -999 | 3    | 29154   | % São Paulo           | SP             | Brasil    | IAGUSP    |
| 29031 | -27 8825           | -65 5589          | 471   | 12   | 18 %      | Bajastine             | TU          | argentina | FEAOC     | : | 29250 | -23.594  | -70,192  | -999 | 4    | 29250   | % Antofagasta         | -999           | Chile     | CHILE     |
| 29032 | -26 3939           | -65 2997          | 780   | 1.2  | 1025 %    | BenjaminPaz           | TU          | argentina | FEAOC     |   | 29256 | -27.36   | -70.332  | 381  | 4    | 29256   | % Copiapo             | -999           | Chile     | CHILE     |
| 20002 | -27 7803           | -65 5064          | 383   | 1.2  | 3 %       | Casas\/ieias          | TU          | argentina | FEAOC     |   | 29257 | -29.754  | -71.2574 | 162  | 4    | 29257   | % La Serena           | -999           | Chile     | CHILE     |
| 20000 | -26.4780           | 64 6461           | 446   | 1.2  | 8 %       |                       |             | argentina | EEAOC     |   | 29265 | -19 0111 | -69 8571 | 100  | 4    | 29265   | % Camarones           |                | Chile     | CHILE     |
| 20034 | 26 7875            | 65 1053           | 440   | 1.2  | 2040 %    | ElColmenar            | TU          | argentina | EEAOC     |   | 29268 | -20 5014 | -69 3425 | 1325 | 4    | 29268   | % Pica                |                | Chile     | CHILE     |
| 29035 | -20.7675           | -05.1955          | 402   | 1.2  | 2049 %    |                       |             | argentina | EEAOC     |   | 20200 | -20.0014 | -00.0420 | 1020 |      | 20273   | % LICN Guavacan       |                | Chile     | CHILE     |
| 29030 | -27.03             | -05.4000          | 399   | 1.2  | 10000 %   |                       |             | argentina | EEAOC     |   | 20270 | -20.0000 | 70 / 102 | 25/3 | -    | 20270   | % Los Molles (Bocat   | omal           | Chile     |           |
| 29037 | -27.4469           | -05.3514          | 317   | 1.2  | 13 %      | Ingas                 |             | argentina | EEAOC     |   | 20274 | -30.740  | 69 0420  | 2040 | 4    | 20276   | Colomo Purol          | omaj           | Chilo     |           |
| 29038 | -27.0028           | -04.085           | 325   | 1.2  | 6 %       | Javicho               | TU          | argentina | EEAOC     |   | 29270 | -22.471  | -00.9429 | 2706 | 4    | 29270   |                       |                | Chile     |           |
| 29039 | -26.9306           | -65.3017          | 394   | 1.2  | 10000 %   | LA BOLSA              | 10          | argentina | EEAOC     |   | 29277 | -21.2239 | -06.2550 | 3700 | 4    | 29277   |                       |                | Chile     |           |
| 29040 | -26.635            | -64.835           | 491   | 1.2  | 17 %      | LaCruz                | 10          | argentina | EEAOC     |   | 29278 | -28.5811 | -70.7982 | 470  | 4    | 29278   | % CE Huasco           |                | Chile     | CHILE     |
| 29041 | -27.2833           | -65.6094          | 388   | 1.2  | 19 %      | LasFaldas             | TU          | argentina | EEAOC     |   | 29279 | -23.4071 | -07.9037 | 2694 | 4    | 29279   | % Camar               |                | Chile     | CHILE     |
| 29042 | -26.9153           | -65.6817          | 1908  | 1.2  | 10 %      | LasNubes              | TU          | argentina | EEAOC     |   | 29280 | -23.504  | -70.4046 | 105  | 4    | 29280   | % Altos la Portada    |                | Chile     | CHILE     |
| 29043 | -26.8192           | -64.8503          | 393   | 1.2  | 5 %       | MonteRedondo          | TU          | argentina | EEAOC     |   | 29282 | -22.9322 | -68.2134 | 2416 | 4    | 29282   | % SP de Atacama       |                | Chile     | CHILE     |
| 29044 | -27.6383           | -65.3636          | 309   | 1.2  | 14 %      | MonteToro             | TU          | argentina | EEAOC     | - | 29283 | -29.754  | -/1.25/4 | 162  | 4    | 29283   | % LaSerena (Romer     | al)            | Chile     | CHILE     |
| 29045 | -26.8147           | -65.7239          | 2427  | 1.2  | 11 %      | PinarDeLsCiervos      | TU          | argentina | EEAOC     | 2 | 29290 | -19.1619 | -70.181  | 97   | 4    | 29290   | % Cuya                |                | Chile     | CHILE     |
| 29046 | -27.1975           | -65.6183          | 427   | 1.2  | 1 %       | PuebloViejo           | TU          | argentina | EEAOC     | : | 29297 | -22.3345 | -68.2136 | 3245 | 4    | 29297   | % Caspana             |                | Chile     | CHILE     |
| 29047 | -26.3956           | -64.5042          | 399   | 1.2  | 7 %       | Rapelli 2             | TU          | argentina | EEAOC     | - | 29298 | -25.434  | -70.4532 | 213  | 4    | 29298   | % La Cachina          |                | Chile     | CHILE     |
| 29048 | -27.4747           | -65.6764          | 389   | 1.2  | 2 %       | SantaAna              | TU          | argentina | EEAOC     | : | 29299 | -23.5906 | -67.8901 | 3357 | 4    | 29299   | % Socaire             |                | Chile     | CHILE     |
| 29049 | -26.9078           | -65.7658          | 2279  | 1.2  | 12 %      | SantaCruz             | TU          | argentina | EEAOC     | : | 29300 | -23.1905 | -68.0072 | 2478 | 4    | 29300   | % Toconao             |                | Chile     | CHILE     |
| 29050 | -27.1656           | -64.8425          | 401   | 1.2  | 15 %      | Viclos                | TU          | argentina | EEAOC     | : | 29301 | -27.9559 | -70.006  | 1090 | 4    | 29301   | % Amolana             |                | Chile     | CHILE     |
| 29051 | -27.3423           | -65.7739          | 567   | 1.2  | 41 %      | Alpachiri             | TU          | argentina | EEAOC     | : | 29302 | -26.2998 | -70.6241 | 127  | 4    | 29302   | % Falda Verde         |                | Chile     | CHILE     |
| 29052 | -26.0942           | -64.6022          | 535   | 1.2  | 63 %      | Antilla               | TU          | argentina | EEAOC     | : | 29303 | -27.3454 | -70.622  | 188  | 4    | 29303   | % La Copa             |                | Chile     | CHILE     |
| 29053 | -26.0481           | -63.8628          | 320.9 | 1.2  | 65 %      | Babilonia             | TU          | argentina | EEAOC     | : | 29304 | -30.9203 | -71.3841 | 464  | 4    | 29304   | % Ajial de Quiles     |                | Chile     | CHILE     |
| 29054 | -27.0725           | -65.4965          | 378   | 1.2  | 70 %      | Caspichango2          | TU          | argentina | EEAOC     | : | 29305 | -30.6331 | -71.4514 | 80   | 4    | 29305   | % Algarrobo Bajo      |                | Chile     | CHILE     |
| 29055 | -26.3771           | -65.9649          | 1710  | 1.2  | 31 %      | ColalaoValle          | TU          | argentina | EEAOC     | : | 29306 | -30.699  | -71.3217 | 290  | 4    | 29306   | % Camarico            |                | Chile     | CHILE     |
| 29056 | -27.2509           | -64.6628          | 308   | 1.2  | 9 %       | El Charco             | TU          | argentina | EEAOC     | : | 29307 | -30.8571 | -70.7307 | 1194 | 4    | 29307   | % Chaguaral           |                | Chile     | CHILE     |
| 29057 | -26.9382           | -65.4712          | 494   | 1.2  | 61 %      | El Guaval             | TU          | argentina | EEAOC     | : | 29308 | -30.7745 | -70.9268 | 504  | 4    | 29308   | % El Palqui           |                | Chile     | CHILE     |
| 29058 | -26.6572           | -64.9311          | 585   | 1.2  | 23 %      | ElRodeo 2             | TU          | argentina | EEAOC     | : | 29309 | -31.5885 | -71.5098 | 22   | 4    | 29309   | % Huentelauquen       |                | Chile     | CHILE     |
| 29059 | -26.5366           | -64.653           | 425   | 1.2  | 21 %      | LaArgentina           | ΤU          | argentina | EEAOC     | : | 29310 | -30.8827 | -71.2397 | 265  | 4    | 29310   | % La Polvareda        |                | Chile     | CHILE     |
| 29060 | -27,2289           | -65,2203          | 324   | 1.2  | 27 %      | LosQuamados           | TU          | argentina | EEAOC     | : | 29650 | -25.3365 | -57.5214 | 131  | 9    | 29650   | % FPol.Slorenzo       | Distr. Capital | Paraguai  | -999      |
| 29061 | -26 9095           | -65 3518          | 440   | 12   | 4 %       | Lules (LaBomba)       | TU          | argentina | FFAOC     | : | 29651 | -22.5584 | -61.5601 | 206  | 9    | 29651   | % Pratts Gill         | Boquerón       | Paraduai  | -999      |
| 29062 | -26 9989           | -65 4128          | 397   | 12   | 72 %      | MonteGrande 2         | TU          | argentina | FEAOC     | : | 29652 | -22.0305 | -60.619  | 167  | 9    | 29652   | % Mariscal Estigarrit | pia Boquerón   | Paraduai  | -999      |
| 20062 | -26 3958           | -64 4897          | 400   | 1.2  | 62 %      | Ranelli 2             | TU          | argentina | FEAOC     |   | 29653 | -23 4977 | -58 7904 | 98   | 9    | 29653   | % Pozo Colorado       | Pres Haves     | Paraguai  | -999      |
| 20000 | -26 7517           | -65 1161          | 504   | 1.2  | 71 %      | Santalsahel           | тц          | argentina | FEAOC     |   | 29654 | -23 4415 | -57 4302 | 75   | 9    | 29654   | % Concepción          | Concepción     | Paraguai  | -999      |
| 20065 | 27 2535            | 65 3253           | 320   | 1.2  | 28 %      | Simoca                |             | argentina | EEAOC     |   | 29655 | -25 4558 | -54 8389 | 247  | 9    | 29655   | % Aerop Guaranì       | Canindevú      | Paraguai  | -999      |
| 29003 | -21.2000           | -00.0200          | 520   | 1.2  | 20066 %   | Catamarca             | CA          | argenting |           |   | 29656 | -26 8812 | -58 3184 | 58   | a    | 29656   | % Pilar               | Ñeembucú       | Paraquei  | -999      |
| 20067 | -20.+009<br>26 120 | -0J.120<br>65.079 | 1020  | 1.4  | 20067 %   | Cofovoto              |             | argonting |           |   | 29805 | -31 7    | -55.82   | _999 | 12   | 29805   | % Tacuarembo          | _999           | Uruquai   | Uruquai   |
| 29007 | -20.139            | -00.9/8           | 1030  | 1    | 29007 %   | LaPioio               |             | argenting |           |   | 20807 | -31 27   | -57.88   | -505 | 12   | 20807   | % Salto               | -000           | Uruguai   | Uruquai   |
| 29008 | -29.432            | -00.043           | 499   | 1    | 29000 %   | Lar(IUja<br>Chilosita |             | argenuna  |           |   | 29811 | -30.4    | -56.51   | 121  | 12   | 29811   | % Artigas             | -999           | Uruquai   | Uruquai   |
| 29009 | -29.10             | -07.5             | 2480  | 1    | 29009 %   | Tilcara               |             | argenting |           | _ |       |          |          |      |      |         |                       |                |           |           |
| 29010 | -23.37             | -00.4             | 2400  | 1    | 29010 70  | riiodid               | 50          | argenuna  | ANGENTINA |   |       |          |          |      |      |         |                       |                |           |           |

| %ID   | lat      | lon                 | alt        | dono | Idlocal %      | local               | prov/estado | pais    | rede    | %ID   | lat      | lon                 | alt   | dono | Idlocal % | local                 | prov/estado | pais   | rede   |
|-------|----------|---------------------|------------|------|----------------|---------------------|-------------|---------|---------|-------|----------|---------------------|-------|------|-----------|-----------------------|-------------|--------|--------|
| 29813 | -31.06   | -55.6               | -999       | 12   | 29813 %        | Buena Unión         | -999        | Uruguai | URUGUAI | 30329 | -20.0954 | -50.3542            | 457   | 18   | 733 %     | JALES                 | SP          | Brasil | InmetA |
| 29822 | -31.28   | -57.92              | 49         | 12   | 29822 %        | LES                 | -999        | Uruguai | LES     | 30331 | -27.1693 | -51.559             | 776   | 18   | 841 %     | JOAÇABA               | SC          | Brasil | InmetA |
| 29826 | -31.75   | -57.87              | -999       | 12   | 29826 %        | Baltazar Brum       | -999        | Uruguai | URUGUAI | 30334 | -23.5053 | -49.9464            | 522   | 18   | 821 %     | JOAQUIM TÁVORA        | PR          | Brasil | InmetA |
| 29827 | -31.24   | -57.47              | -999       | 12   | 29827 %        | Colonia Rubio       | -999        | Uruguai | URUGUAI | 30335 | -21.0956 | -49.9203            | 405   | 18   | 735 %     | JOSE BONIFACIO        | SP          | Brasil | InmetA |
| 29952 | -29.44   | -53.82              | 489        | 15   | 8 %            | São Martinho da S.  | RS          | Brasil  | SONDA   | 30339 | -28.2219 | -51.5122            | 842   | 18   | 844 %     | LAGOA VERMELHA        | RS          | Brasil | InmetA |
| 29955 | -20.43   | -54.53              | 677        | 15   | 12 %           | Campo Grande        | MS          | Brasil  | SONDA   | 30341 | -21.6655 | -49.7344            | 459   | 18   | 727 %     | LINS                  | SP          | Brasil | InmetA |
| 29956 | -27.08   | -52.61              | 700        | 15   | 6 %            | Chapecó             | SC          | Brasil  | SONDA   | 30349 | -21.6092 | -55.1778            | 401   | 18   | 731 %     | Maracaju              | MS          | Brasil | InmetA |
| 29958 | -27.6017 | -48.5178            | 31         | 15   | 1 %            | Florianópolis       | SC          | Brasil  | SONDA   | 30351 | -24.3209 | -54.0111            | 392   | 18   | 820 %     | Mar. Candido Rondon   | PR          | Brasil | InmetA |
| 29959 | -26.2525 | -48.8577            | 48         | 15   | 4 %            | Joinville           | SC          | Brasil  | SONDA   | 30353 | -23.2428 | -51.56              | 542   | 18   | 835 %     | MARINGA               | PR          | Brasil | InmetA |
| 29960 | -26.98   | -50.71              | 1036       | 15   | 29960 %        | Lebon Regis         | SC          | Brasil  | SONDA   | 30355 | -20.3956 | -56.4317            | 140   | 18   | 722 %     | MIRANDA               | MS          | Brasil | InmetA |
| 29966 | -29.09   | -49.81              | 15         | 15   | 5 %            | Sombrio             | SC          | Brasil  | SONDA   | 30359 | -22.85   | -46.05              | 1550  | 18   | 509 %     | MONTE VERDE           | MG          | Brasil | InmetA |
| 30204 | -29.7116 | -55.5261            | 121        | 18   | 826 %          | ALEGRETE            | RS          | Brasil  | InmetA  | 30367 | -18.9889 | -56.6231            | 104   | 18   | 717 %     | NHUMIRIM              | MS          | Brasil | InmetA |
| 30213 | -20.4756 | -55.7839            | 155        | 18   | 719 %          | AQUIDAUANA          | MS          | Brasil  | InmetA  | 30370 | -23.4152 | -50.5778            | 668   | 18   | 842 %     | NOVA FÁTIMA           | PR          | Brasil | InmetA |
| 30217 | -19.6    | -46.9333            | 1020       | 18   | 505 %          | ARAXÁ               | MG          | Brasil  | InmetA  | 30371 | -24.4373 | -51.9631            | 654   | 18   | 822 %     | NOVA TEBAS            | PR          | Brasil | InmetA |
| 30221 | -21.1328 | -48.8403            | 525        | 18   | 736 %          | ARIRANHA            | SP          | Brasil  | InmetA  | 30372 | -22.9486 | -49.8942            | 448   | 18   | 716 %     | OURINHOS              | SP          | Brasil | InmetA |
| 30223 | -23.0997 | -48,9455            | 725        | 18   | 725 %          | AVARÉ               | SP          | Brasil  | InmetA  | 30380 | -19,4143 | -51,1053            | 424   | 18   | 710 %     | PARANAIBA             | MS          | Brasil | InmetA |
| 30224 | -31.3478 | -54.0133            | 230        | 18   | 827 %          | BAGÉ                | RS          | Brasil  | InmetA  | 30385 | -28.2294 | -52.4039            | 684   | 18   | 839 %     | PASSO FUNDO           | RS          | Brasil | InmetA |
| 30229 | -22.3166 | -49.0666            | 550        | 18   | 705 %          | BAURU               | SP          | Brasil  | InmetA  | 30386 | -20,7453 | -46,6339            | 875.2 | 18   | 516 %     | PASSOS                | MG          | Brasil | InmetA |
| 30231 | -29.1672 | -51.5347            | 640        | 18   | 840 %          | Bento Goncalves     | RS          | Brasil  | InmetA  | 30388 | -18,9967 | -46.9856            | 963   | 18   | 523 %     | PATROCINIO            | MG          | Brasil | InmetA |
| 30237 | -30.5477 | -53.4675            | 450        | 18   | 812 %          | CACAPAVA DO SUL     | RS          | Brasil  | InmetA  | 30396 | -22.7027 | -47.623             | 571   | 18   | 726 %     | PIRACICABA            | SP          | Brasil | InmetA |
| 30240 | -21 9178 | -46 3828            | 1150       | 18   | 530 %          | CALDAS              | MG          | Brasil  | InmetA  | 30400 | -25 7217 | -53 7481            | 520   | 18   | 855 %     |                       | PR          | Brasil | InmetA |
| 30241 | -30 8106 | -51 8347            | 108        | 18   | 838 %          | CAMAQUÃ             | RS          | Brasil  | InmetA  | 30401 | -22 5333 | -55 5333            | 650   | 18   | 703 %     | PONTA PORÃ            | MS          | Brasil | InmetA |
| 30244 | -19 5347 | -49 5286            | 547        | 18   | 519 %          |                     | MG          | Brasil  | InmetA  | 30403 | -30.05   | -51 1666            | 46 97 | 18   | 801 %     | PORTO ALEGRE          | RS          | Brasil | InmetA |
| 30245 | -20.45   | -54 6166            | 530        | 18   | 702 %          | CAMPO GRANDE        | MS          | Brasil  | InmetA  | 30404 | -21 7058 | -57 5533            | 85    | 18   | 723 %     |                       | MS          | Brasil | InmetA |
| 30250 | -31 4058 | -52 7011            | 464        | 18   | 811 9          | CANGUCU             | RS          | Brasil  | InmetA  | 30407 | -22 1166 | -51.4               | 435.6 | 18   | 707 %     | PRES PRUDENTE         | SP          | Brasil | InmetA |
| 30258 | -21 7797 | -47 075             | 101        | 18   | 738 %          | CASA BRANCA         | SP          | Brasil  | InmetA  | 30408 | -30 3686 | -56 4372            | 124   | 18   | 831 %     | OLIARAI               | RS          | Brasil | InmetA |
| 30260 | -24 7894 | _40 0007            | 1003       | 18   | 810 %          | CASTRO              | PR          | Brasil  | InmetA  | 30400 | -22 3725 | -50 9742            | 350   | 18   | 718 %     | RANCHARIA             | SP          | Brasil | InmetA |
| 30265 | -19 9858 | -48 1525            | 568        | 18   | 520 %          | Conceicao das Almas | MG          | Brasil  | InmetA  | 30414 | -32 0333 | -52 1               | 2 4 6 | 18   | 802 %     | RIO GRANDE            | RS          | Brasil | InmetA |
| 30268 | -18 9967 | -57 6375            | 126        | 18   | 724 %          |                     | MS          | Brasil  | InmetA  | 30415 | -29 873  | -52 3825            | 2.40  | 18   | 813 %     |                       | RS          | Brasil | InmetA |
| 30272 | -28 6036 | -53 6736            | 432        | 18   | 853 9          |                     | RS          | Brasil  | InmetA  | 30419 | -10 8753 | -02.0020            | 012   | 18   | 525 %     | SACRAMENTO            | MG          | Brasil | InmetA |
| 30272 | -20.0000 | -00.0700            | 023.5      | 10   | 807 %          | CURITIBA            | DD          | Brasil  | InmetA  | 30423 | 20.7     | 53.7                | 05    | 10   | 803 %     | SANTA MARIA           | PS          | Brasil | InmetA |
| 30278 | 25 60/8  | 53 0046             | 520.0      | 10   | 843 0          |                     | DD          | Brasil  | InmetA  | 30425 | 27 5335  | 54 285              | 276   | 10   | 810 %     | SANTA ROSA            | RS          | Brasil | InmetA |
| 30270 | -20.0040 | -53.0340            | 160        | 10   | 721 0          |                     | MS          | Brasil  |         | 30423 | -27.0000 | -54.205             | 328   | 10   | 804 %     | Santana do Livramento | RS          | Brasil | InmetA |
| 30282 | 27 6603  | -52 3064            | 765        | 10   | 828 0          | ERECHIM             | RS          | Brasil  | InmetA  | 30428 | -30.0000 | 53 7833             | 550   | 10   | 805 %     |                       | PS          | Brasil | InmetA |
| 30202 | -27.0003 | -32.3004            | 1.8        | 10   | 806 %          |                     | SC SC       | Brasil  |         | 30420 | 28 6404  | -55.7055            | 83    | 10   | 830 %     | SÃO BORIA             | RS RS       | Brasil | InmetA |
| 30200 | 20.0666  | 40.0100             | 1026       | 10   | 708 %          |                     | SP          | Brasil  | InmetA  | 30429 | -20.0494 | 47 8836             | 863   | 10   | 711 %     | SAO CAPLOS            | SD          | Brasil | InmetA |
| 20292 | 27 2056  | -47.0000            | 400        | 10   | 954 0          | Fred Westshalon     |             | Brasil  | InmetA  | 20430 | 20 2414  | -47.0000<br>54.2109 | 126   | 10   | 022 04    |                       |             | Drasil |        |
| 20293 | -27.3930 | -33.4294<br>52.0296 | 490        | 10   | 004 /          |                     |             | Brasil  | InmetA  | 20432 | -30.3414 | -54.5100            | 647   | 10   | 722 %     |                       | Me          | Drasil |        |
| 20290 | -24.100  | -55.0260            | 400        | 10   | 727 0          | BITINGA             |             | Brasil  | InmetA  | 30433 | -19.4201 | -54.5551            | 1047  | 10   | 732 %     | SUSE DOS AUSENTES     |             | Drasil | InmetA |
| 20207 | -21.0000 | -40.0<br>52 2005    | 49Z<br>295 | 10   | 001 0          |                     |             | Brasil  | InmetA  | 30430 | -20.7514 | -50.0565            | 244   | 10   | 029 %     |                       | RO<br>De    | Brasil |        |
| 20200 | -23.2323 | -00.0090            | 305        | 10   | 024 7<br>710 0 |                     | PR<br>PD    | Drasil  | InmetA  | 30441 | -20.4172 | -34.9023            | 245   | 10   | 002 %     |                       | ко<br>60    | Drasil | InmetA |
| 30308 | -24.0/1/ | -47.5461            | 3          | 18   | 712 %          |                     | 52          | Brasil  | InmetA  | 30443 | -23.8516 | -48.1645            | 044   | 18   | 715 %     |                       | 58          | Brasil | InmetA |
| 30310 | -25.4945 | -48.3259            | 1          | 18   | 847 %          |                     | PR          | Brasil  | InmetA  | 30444 | -23.4964 | -46.62              | 792.1 | 18   | 701 %     |                       | SP          | Brasil | InmetA |
| 30312 | -20.0000 | -51.0894            | 1260       | 18   | 823 %          |                     | PR          | Brasii  | InmetA  | 30447 | -18.9697 | -50.6289            | 488.5 | 18   | 710 %     | SAU SIMAU             | GO          | Brasil | InmetA |
| 30313 | -26.9164 | -49.2683            | 86.13      | 18   | 817 %          |                     | SC          | Brasil  | InmetA  | 30451 | -23.4256 | -47.5852            | 609   | 18   | 713 %     | SOROCABA              | SP          | Brasil | InmetA |
| 30318 | -23.9814 | -48.8853            | 707        | 18   | /14 %          | ITAPEVA             | SP          | Brasil  | InmetA  | 30462 | -29.3503 | -49.7331            | 4.5   | 18   | 808 %     | TORRES                | RS          | Brasil | InmetA |
| 30319 | -22.415  | -46.8053            | 633        | 18   | /39 %          |                     | 52          | Brasil  | InmetA  | 30463 | -20.7833 | -51.7               | 313   | 18   | 704 %     | TRES LAGUAS           | MS          | Brasil | InmetA |
| 30320 | -26.0813 | -48.6417            | 2          | 18   | 851 %          | TAPOA               | SC          | Brasil  | InmetA  | 30467 | -28.1264 | -49.4792            | 1810  | 18   | 845 %     | UKUBICI               | SC          | Brasil | InmetA |
| 30322 | -18.9528 | -49.5253            | 560        | 18   | 512 %          | ITUIUTABA           | MG          | Brasil  | InmetA  | 30468 | -29.8425 | -57.0825            | 62.31 | 18   | 809 %     | URUGUAIANA            | RS          | Brasil | InmetA |
| 30324 | -25.0133 | -50.8544            | 808        | 18   | 818 %          |                     | PR          | Brasil  | InmetA  | 30470 | -21.3192 | -50.9303            | 374   | 18   | 734 %     | VALPARAISO            | SP          | Brasil | InmetA |
| 30325 | -22.3    | -53.8166            | 3/3.3      | 18   | 709 %          | IVINHEMA            | IVIS        | Brasil  | InmetA  | 30477 | -20.4069 | -49.9653            | 486   | 18   | 729 %     | VUTUPUKANGA           | 52          | Brasil | inmetA |

| %ID   | lat      | lon      | alt  | dono | Idlocal | %         | local                | prov/estado | pais   | rede   | %ID   | lat      | lon      | alt  | dono | Idlocal % | local                  | prov/estado | pais    | rede    |
|-------|----------|----------|------|------|---------|-----------|----------------------|-------------|--------|--------|-------|----------|----------|------|------|-----------|------------------------|-------------|---------|---------|
| 30485 | -26.9388 | -52.3982 | 889  | 18   | 858     | %         | XANXERE              | SC          | Brasil | InmetA | 30701 | -20.03   | -46.01   | 697  | 18   | 565 %     | BAMBUÍ                 | MG          | Brasil  | InmetA  |
| 30486 | -26.8193 | -50.8353 | 952  | 18   | 859     | %         | CAÇADOR              | SC          | Brasil | InmetA | 30711 | -20.9099 | -47.1143 | 845  | 18   | 561 %     | SSebastiao do Paraiso  | MG          | Brasil  | InmetA  |
| 30487 | -28.9314 | -49.498  | 12   | 18   | 867     | %         | ARARANGUA            | SC          | Brasil | InmetA | 30713 | -19.71   | -47.9619 | 778  | 18   | 568 %     | UBERABA                | MG          | Brasil  | InmetA  |
| 30489 | -22.6394 | -52.8903 | 362  | 18   | 849     | %         | Diamante do Norte    | PR          | Brasil | InmetA | 30714 | -22.1481 | -53.7637 | 347  | 18   | 701 %     | ANGÉLICA               | MS          | Brasil  | InmetS  |
| 30490 | -23.9669 | -55.0242 | 402  | 18   | 751     | %         | SETE QUEDAS          | MS          | Brasil | InmetA | 30715 | -22.955  | -55.626  | 605  | 18   | 702 %     | ARAL MOREIRA           | MS          | Brasil  | InmetS  |
| 30491 | -25.509  | -48.8087 | 59   | 18   | 873     | %         | MORRETES             | PR          | Brasil | InmetA | 30716 | -21.7501 | -52.4713 | 392  | 18   | 759 %     | BATAGUASSU             | MS          | Brasil  | InmetA  |
| 30492 | -26.3986 | -51.3544 | 1018 | 18   | 875     | %         | GEN, CARNEIRO        | PR          | Brasil | InmetA | 30717 | -21,2983 | -52.0689 | 345  | 18   | 705 %     | BRASILÂNDIA            | MS          | Brasil  | InmetS  |
| 30493 | -26.4172 | -52.3488 | 980  | 18   | 876     | %         | CLEVELANDIA          | PR          | Brasil | InmetA | 30718 | -22.6571 | -54.8193 | 456  | 18   | 706 %     | CAARAPÓ                | MS          | Brasil  | InmetS  |
| 30501 | -21.775  | -54.5281 | 329  | 18   | 743     | %         | RIO BRILHANTE        | MS          | Brasil | InmetA | 30720 | -23.6449 | -54.5703 | 319  | 18   | 709 %     | IGUATEMI               | MS          | Brasil  | InmetS  |
| 30504 | -27 4183 | -49 6467 | 484  | 18   | 863     | %         | ITUPORANGA           | SC          | Brasil | InmetA | 30721 | -22 0928 | -54 7988 | 360  | 18   | 710 %     | ITAPORÃ                | MS          | Brasil  | InmetS  |
| 30508 | -28 8536 | -52 5417 | 667  | 18   | 837     | %         | SOLEDADE             | RS          | Brasil | InmetA | 30722 | -22 5754 | -55 1603 | 499  | 18   | 711 %     | LAGUNA CARAPÃ          | MS          | Brasil  | InmetS  |
| 30515 | -27 9199 | -53 3174 | 642  | 18   | 856     | %         | Palmeira das Missoes | RS          | Brasil | InmetA | 30723 | -21 451  | -54 342  | -100 | 18   | 712 %     | Nova Alborada do Sul   | MS          | Brasil  | InmetS  |
| 30518 | -29 1914 | -54 8856 | 304  | 18   | 833     | %         | SANTIAGO             | RS          | Brasil | InmetA | 30725 | -20 4669 | -53 763  | 442  | 18   | 715 %     | Ribas do Rio Pardo     | MS          | Brasil  | InmetS  |
| 30520 | -30 0097 | -50 1353 | 1    | 18   | 834     | %         | TRAMANDAI            | RS          | Brasil | InmetA | 30726 | -21 3059 | -52 8204 | 383  | 18   | 716 %     | Srita do Rio Pardo     | MS          | Brasil  | InmetS  |
| 30521 | -28 2756 | _40 0344 | 1410 | 18   | 815     | %         |                      | SC          | Brasil | InmetA | 30727 | -20 3514 | -51 4302 | 374  | 18   | 717 %     | SELVIRIA               | MS          | Brasil  | InmetS  |
| 30526 | -20.2700 | 55 3204  | /31  | 18   | 750     | 0/2       |                      | MS          | Brasil | InmetA | 307/0 | -20.5514 | -57 8002 | 508  | 18   | 803 %     |                        | DD          | Brasil  | InmetB  |
| 30520 | -23.0025 | 51 7208  | 516  | 10   | 742     | 70<br>0/2 |                      | MS          | Brasil | InmetA | 30750 | -24.3709 | -32.0003 | 050  | 10   | 806 %     |                        | DD          | Brasil  | InmetB  |
| 20522 | -19.1225 | 46 2621  | 15   | 10   | 742     | 70<br>0/. |                      |             | Brasil | InmetA | 20751 | -25.3223 | -49.1377 | 930  | 10   | 804 %     | Loronioiros do Sul     |             | Drasil  | InmotB  |
| 20544 | -24.0475 | -40.2031 | 920  | 10   | 070     | 70<br>0/. |                      |             | Brasil | InmetA | 20751 | -20.0009 | -02.092  | 1017 | 10   | 804 %     |                        |             | Brasil  |         |
| 20545 | -29.3000 | -50.0274 | 030  | 10   | 0/9     | 70<br>0/  | Dianiaia Carguaira   | N3<br>80    | Brasil | InmetA | 30703 | -29.0491 | -50.1490 | 1017 | 10   | 097 70    |                        |             | Drasil  | InmetA  |
| 30545 | -20.2004 | -55.0520 | 010  | 10   | 040     | 70<br>0/  |                      | 30          | Drasii |        | 30704 | -29.0743 | -31.004  | 23   | 10   | 004 %     |                        | RO          | Drasii  | InmetA  |
| 30546 | -28.6042 | -48.8133 | 52   | 18   | 000     | %<br>0/   |                      | 50          | Brasil | InmetA | 30765 | -31.8025 | -52.4072 | 13   | 18   | 887 %     | Capao do Leao          | R5<br>DC    | Brasil  | InmetA  |
| 30547 | -26.2485 | -49.5806 | 869  | 18   | 862     | %<br>0/   |                      | SC          | Brasil | InmetA | 30766 | -30.5432 | -52.5247 | 428  | 18   | 893 %     | Encruzilnada do Sul    | RS          | Brasil  | InmetA  |
| 30548 | -23.7731 | -50.1806 | 930  | 18   | 8/1     | %         | IBAITI               | PR          | Brasil | InmetA | 30767 | -28.6535 | -53.1119 | 455  | 18   | 883 %     | IBIRUBA                | RS          | Brasil  | InmetA  |
| 30557 | -20.9817 | -54.9719 | 464  | 18   | 754     | %         | SIDROLANDIA          | MS          | Brasil | InmetA | 30768 | -29.7021 | -54.6943 | 134  | 18   | 889 %     | S.VICENTE DO SUL       | RS          | Brasil  | InmetA  |
| 30558 | -22.8572 | -54.6056 | 379  | 18   | 749     | %         | JUII                 | MS          | Brasil | InmetA | 30769 | -28.7048 | -51.8708 | 545  | 18   | 894 %     |                        | RS          | Brasil  | InmetA  |
| 30564 | -21.3383 | -48.1139 | 544  | 18   | 747     | %         | PRADOPOLIS           | SP          | Brasil | InmetA | 30770 | -29.4503 | -51.8243 | 80   | 18   | 882 %     | TEUTONIA               | RS          | Brasil  | InmetA  |
| 30566 | -22.4708 | -48.5569 | 543  | 18   | 741     | %         | BARRA BONITA         | SP          | Brasil | InmetA | 30771 | -29.0894 | -53.8267 | 462  | 18   | 886 %     | TUPANCIRETA            | RS          | Brasil  | InmetA  |
| 30628 | -28.5325 | -49.3156 | 48   | 18   | 814     | %         | URUSSANGA            | SC          | Brasil | InmetA | 30772 | -27.3839 | -51.2161 | 963  | 18   | 898 %     | CAMPOS NOVOS           | SC          | Brasil  | InmetA  |
| 30629 | -26.4071 | -52.8504 | 960  | 18   | 816     | %         | NOVO HORIZONTE       | SC          | Brasil | InmetA | 30773 | -27.0853 | -52.6357 | 679  | 18   | 895 %     | CHAPECO                | SC          | Brasil  | InmetA  |
| 30630 | -25.6017 | -54.4842 | 231  | 18   | 846     | %         | Foz do Iguacu        | PR          | Brasil | InmetA | 30774 | -27.8022 | -50.3355 | 953  | 18   | 865 %     | LAGES                  | SC          | Brasil  | InmetA  |
| 30631 | -26.7769 | -53.5045 | 665  | 18   | 857     | %         | Smiguel do Oeste     | SC          | Brasil | InmetA | 30775 | -27.6785 | -49.042  | 881  | 18   | 870 %     | RANCHO QUEIMADO        | SC          | Brasil  | InmetA  |
| 30632 | -27.2886 | -50.6042 | 982  | 18   | 860     | %         | CURITIBANOS          | SC          | Brasil | InmetA | 30778 | -20.9492 | -48.4899 | 790  | 18   | 764 %     | BEBEDOURO              | SP          | Brasil  | InmetA  |
| 30633 | -26.9375 | -50.1464 | 592  | 18   | 861     | %         | RIO DO CAMPO         | SC          | Brasil | InmetA | 30779 | -23.8447 | -46.1434 | 5    | 18   | 765 %     | BERTIOGA               | SP          | Brasil  | InmetA  |
| 30634 | -26.3936 | -50.3633 | 808  | 18   | 864     | %         | MAJOR VIEIRA         | SC          | Brasil | InmetA | 30780 | -22.952  | -46.5305 | 891  | 18   | 744 %     | Bragança Paulista      | SP          | Brasil  | InmetA  |
| 30635 | -23.3592 | -52.9319 | 381  | 18   | 869     | %         | CIDADE GAUCHA        | PR          | Brasil | InmetA | 30782 | -21.4577 | -51.5523 | 720  | 18   | 762 %     | DRACENA                | SP          | Brasil  | InmetA  |
| 30636 | -31.2478 | -50.9057 | 10   | 18   | 878     | %         | MOSTARDAS            | RS          | Brasil | InmetA | 30783 | -22.2352 | -49.9651 | 660  | 18   | 763 %     | MARÍLIA                | SP          | Brasil  | InmetA  |
| 30637 | -28.5136 | -50.8828 | 986  | 18   | 880     | %         | VACARIA              | RS          | Brasil | InmetA | 30784 | -24.5331 | -47.8641 | 35   | 18   | 766 %     | REGISTRO               | SP          | Brasil  | InmetA  |
| 30644 | -23.4494 | -54.1817 | 336  | 18   | 752     | %         | ITAQUIRAI            | MS          | Brasil | InmetA | 30785 | -23.7245 | -46.6775 | 771  | 18   | 771 %     | SP-SESC Interlagos     | SP          | Brasil  | InmetA  |
| 30645 | -20.3594 | -47.775  | 600  | 18   | 753     | %         | ITUVERAVA            | SP          | Brasil | InmetA | 30787 | -21.461  | -47.5795 | 620  | 18   | 770 %     | SÃO SIMÃO              | SP          | Brasil  | InmetA  |
| 30646 | -24.9631 | -48.4164 | 667  | 18   | 746     | %         | BARRA DO TURVO       | SP          | Brasil | InmetA | 30788 | -21.9273 | -50.4903 | 498  | 18   | 768 %     | TUPÃ                   | SP          | Brasil  | InmetA  |
| 30647 | -22.4917 | -52.1344 | 311  | 18   | 850     | %         | PARANAPOEMA          | PR          | Brasil | InmetA | 32804 | -31.4389 | -57.9808 | 41   | 18   | 360 %     | SALTO                  | UY          | URUGUAI | InmetU  |
| 30648 | -30.9925 | -54.8153 | 170  | 18   | 881     | %         | DOM PEDRITO          | RS          | Brasil | InmetA | 33571 | -31.3909 | -71.413  | 350  | 4    | 33571 %   | Canela                 |             | Chile   | AGROMET |
| 30650 | -20.5586 | -48.545  | 1    | 18   | 748     | %         | BARRETOS             | SP          | Brasil | InmetA | 33572 | -29.9987 | -71.3985 | 122  | 4    | 33572 %   | Coquimbo [El Panul]    |             | Chile   | AGROMET |
| 30651 | -26.9508 | -48.7619 | 18   | 18   | 868     | %         | ITAJAI               | SC          | Brasil | InmetA | 33573 | -29.9785 | -71.0804 | 198  | 4    | 33573 %   | Gabriela Mistral       |             | Chile   | AGROMET |
| 30655 | -20.4442 | -52.8756 | 388  | 18   | 756     | %         | AGUA CLARA           | MS          | Brasil | InmetA | 33574 | -31.5733 | -70.9982 | 590  | 4    | 33574 %   | Huintil                |             | Chile   | AGROME  |
| 30660 | -23.5233 | -46.8692 | 791  | 18   | 755     | %         | BARUERI              | SP          | Brasil | InmetA | 33575 | -30,3093 | -70.6257 | 1462 | 4    | 33575 %   | Hurtado [Lavaderos]    |             | Chile   | AGROME  |
| 30661 | -24,2819 | -50,2072 | 1106 | 18   | 872     | %         | VENTANIA             | PR          | Brasil | InmetA | 33576 | -31,6481 | -71.197  | 275  | 4    | 33576 %   | Illapel                |             | Chile   | AGROMET |
| 30662 | -25 835  | -50 3686 | 788  | 18   | 874     | %         | S MATEUS DO SUI      | PR          | Brasil | InmetA | 33577 | -30 2031 | -70 0372 | 3209 | 4    | 33577 %   | La Laguna (Elgui)      |             | Chile   | AGROMET |
| 30664 | -22 1008 | -56 54   | 208  | 18   | 757     | %         | BELA VISTA           | MS          | Brasil | InmetA | 33578 | -29 7541 | -71 2574 | 162  | 4    | 33578 %   | La Serena [Fl Romeral] |             | Chile   | AGROMET |
| 30665 | -21.4782 | -56.1369 | 249  | 18   | 758     | %         | JARDIM               | MS          | Brasil | InmetA | 33579 | -30.2515 | -71.2569 | 282  | 4    | 33579 %   | Las Cardas             |             | Chile   | AGROME  |
|       |          |          |      | 10   | 100     |           |                      |             | 2.30   |        | 00010 | 00.2010  |          | 202  | -    | 555.0 70  |                        |             | 2       |         |

\_\_\_\_

| %ID   | lat      | lon      | alt  | dono | Idlocal | % | local                 | prov/estado | pais  | rede    |
|-------|----------|----------|------|------|---------|---|-----------------------|-------------|-------|---------|
| 33580 | -30.592  | -71.248  | 292  | 4    | 33580   | % | Ovalle [Talhuén]      |             | Chile | AGROMET |
| 33581 | -30.0747 | -71.239  | 135  | 4    | 33581   | % | Pan de Azúcar         |             | Chile | AGROMET |
| 33582 | -30.129  | -70.4947 | 1240 | 4    | 33582   | % | Pisco Elqui           |             | Chile | AGROMET |
| 33583 | -29.2472 | -71.468  | 7    | 4    | 33583   | % | Punta de Choros       |             | Chile | AGROMET |
| 33584 | -30.4961 | -71.4905 | 183  | 4    | 33584   | % | Quebrada Seca         |             | Chile | AGROMET |
| 33585 | -30.7228 | -70.7725 | 862  | 4    | 33585   | % | Rapel                 |             | Chile | AGROMET |
| 33586 | -29.9617 | -70.5391 | 900  | 4    | 33586   | % | Rivadavia             |             | Chile | AGROMET |
| 33587 | -31.8856 | -70.714  | 887  | 4    | 33587   | % | Salamanca [Chillepín] |             | Chile | AGROMET |