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Abstract. The main scope of STOCH2F code is to develop a tool for analyzing interaction of solar 

radiation with gases, aerosol and clouds in Earth-atmosphere system. It is applied to a multilayered 

atmosphere, using two-flux approximation for radiative transfer in each layer together with a 

stochastic scheme for diffuse flux transfer between atmospheric layers. STOCH scheme describes 

absorption in each layer and ground as well as planetary reflection (photon exit outside Earth 

atmosphere) in terms of probabilities of trapping in a (final) absorption state, after a random up-and-

down walk which starts as diffuse photon at a given (arbitrary) state in Earth-atmosphere system. 

The general structure is strictly equivalent to a random walk with a set of absorbing states, obeying a 

first order Markov chain. This scheme allows a better insight on radiative interaction between 

atmospheric layers. 

Part 1 describes the philosophy and structure of the stochastic model, showing applications to an 

atmosphere without aerosol or clouds, with pure air and ozone as components. It does not consider 

presence of water vapor (bands 0.72 and 0.8 m), with weak absorption and not monochromatic 

treatment. Further chapters will develop STOCH2F model for 1) solar infrared interval including 

H2O and CO2 absorption in clear-sky conditions;  and 2) interaction of solar radiation with aerosol 

and cloud.    
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1. Introduction: irradiances in plane multilayered atmosphere 

 
 

Model atmospheres for studies of radiative transfer within interval :(0.2-0.8 m) are, 

typically, composed by plane-parallel layers. Each atmospheric layer is a mixture of air 

(basically oxygen, nitrogen and ozone) and aerosol (dry particles and/or droplets)(1). 

Radiative transfer properties for solar monochromatic radiation are dependent of three bulk 

parameters: optical depth , single scattering albedo  and phase function P(',) for 

deviation from an incident direction ' towards a scattered one  (scattering angle ). 

Solar radiation impinging on the top of the atmosphere (=0) is attenuated with progressive 

absorption and/or scattering by air molecules; radiance field at depth  is composed by 

directional irradiance (, o) and a diffuse radiance L(, ), where o indicates downward 

direction coming from Sun (with zenithal angle Zo). Attenuation of monochromatic  

follows Beer's law, 

(, o)= S(, o)= So exp(-mo );       (1.1)  

So is the spectral solar constant at the top of atmosphere (TOA), corrected by Sun-Earth 

distance, and o= cos Zo = 1/mo. The diffuse field follows the radiative transfer equation 

(hereafter RTE)  

 L(,)/ = - L + (/4) 2 L(,') P(; ',) d' + (/4) P(; o, ) S(). (1.2) 

Equation (1.2) describes the rate of change of diffuse radiance through the contribution of: 

1) (negative) attenuation by Beer's Law; 2) transfer of diffuse radiance from all directions ' 

towards ; 3) transfer o by scattering of direct radiation to diffuse. Bulk parameters (, 

, P(; ',)) are vertically inhomogeneous, but model atmospheres use to be divided in N 

homogeneous layers. These parameters are also spectral, being dependent on wavelength. 

Eqs. (1.1) and (1.2) refer to spectral irradiances (in units W.m-2.m-1) or radiances (in units 

W.m-2.m-1.ster-1), indicated by subscript . For the ease of writing such subscript will be 

ignored. For details of equations (1.1) and (1.2), see Liou (2002), section 3.4. 

Question: Which is the central radiative variable usually (and actually) sought in 

meteorology and climatology? Answer: The major interest is devoted to seek the vertical 

profile of radiative balance, in order to assess contribution of gases, aerosol and clouds to 

cooling/heating rate of each layer with thickness z and the impact on dynamical and 

thermodynamical atmospheric processes. Figure 1 and eq. (1.3) resume the radiative 

balance in an atmospheric layer. Note that Ea (absorbed flux) is the quantity actually 

implied in radiative heating/cooling. 

EN(z)= E(z) - E(z),  

EN = -Ea = - cp z T/t = -(p/) T/t        (1.3)  

EN        net irradiance  (W.m-2) 

          air density (kg.m-3) 
cp         specific heat (J/kg ºK) 

          adiabatic lapse rate (ºC m-1) 

z        layer thickness  (m) 
T         temperature  (ºK) 

t           time  (s) 

 

Figure 1. Flux components in radiative 
balance of a layer 

                                                             
1 Weak absorption by  water vapor (bands 0.72 and 0.8 m) is not considered. A further chapter will 
analyze STOCH2F model for infrared interval including H2O and CO2 absorption. 
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Net irradiance EN(z) (or the term Ea in a layer) are important variables in weather and 

climate forecast by numerical circulation models (NMC's). Note that irradiances E() 

rather than radiances L(, ) are needed in eq.(1.3). Therefore, robust evaluation of two-flux 

methods are the goal of these applications. We denote by two-flux method a model for 

assessing upwelling and downwelling fluxes, or strictly speaking, irradiances.   

Physical transfer properties of a layer can be assessed by complex codes (which are able to 

describe distribution of  radiances emerging from the layer) or by simplified yet powerful 

algorithms assessing irradiances (Liou, 2002)(2). All algorithms use the triad (, , P()) as 

fundamental parameters in solutions of  RTE (eq. 1.2), which can be reduced to a two-flux 

couple of equations for each layer (Zdunkowski et al. 2007; Liou 2002; Ceballos 1988): 

 

dE/d' = -a1 E + a2 E + a5         (1.4) 

dE/d' = -a3 E + a4 E + a6  . 

 

Equation (4) describes evolution of  diffuse irradiances E(') inside an homogeneous 

layer with optical thickness  and constant parameters , P();  is solar directional flux. 

Coefficients a1-a6 depend on the adopted two-flux model (3). The general solutions for eq. 

(1.4) are not complex and allow calculation of irradiances E(0), E(0), E(), E() for 

each layer, as well as the assessment of heating rate in eq. (1.3). However, assessing these 

irradiances requires to calculate four coefficients in compliance with layer's boundary 

conditions. This leads to a linear system of 4N unknowns which must be previously solved 

in order to assess irradiances and heating rate profile (Shettle and Weinman 1970). 

The abovementioned methodology leads to provide final results for upward/downward  

irradiances in each layer and numerical solution for eq. (1.3); however, it does not 

contribute to get a deeper insight in how distribution of physical parameters influence on 

absorption profiles in the atmosphere. This paper presents a two-flux model which uses the 

same bulk properties of a multilayered atmosphere but introduces a stochastic point of 

view, providing  simple tools for assessment of the entire absorption profile. It can also be 

used as a tool for better understanding the impact of photon generation at any level of that 

atmosphere. 

 

 

2. Looking at radiative transfer as stochastic process: basic concepts 

 

Let us consider spectral direct solar radiation impinging on the top with DNI (directional 

normal irradiance)  attenuates following exponential Beer's law being transmitted with 

DNI t; diffuse radiation has been generated, with resulting irradiances E emerging at 

layer's top and E exiting through layer's bottom. An irradiance Ea has been absorbed, and 

energy balance may be stated as follows (see figure 2a): 

                                                             
2 In order to provide accurate results for  RTE, two powerful softwares are worth of mention: SBDART 
(Ricchiazzi et al. 1998) and LibRadTran (www.libradtran.org/doku.php, newest release 2020; accessed 
2021).  

3 Assessment of coefficients a1-a6 and solutions of two-flux equations are described in Appendix A. 
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µo = Etop + [Ebot + µo t] + Ea,       (2.1) 

t =  exp(-mo ),  mo= 1/o.       (2.2) 

 

  

Figure 2. (a) Flux balance for direct solar radiation; (b) idem for diffuse incidence. 

 

 

Irradiances , E are spectral quantities. Zenithal angle for directional irradiance  is Zo, 

with cosZo = µo = 1/mo. The term within brackets is used to be called "global radiation", 

being the sum of a "direct" and a "diffuse" irradiance. Note that division of eqs. (2.1) and 

(2.2) by irradiance incident on top of the layer leads to a balance equation 

1 = Roo + Too + Td + Aoo,       (2.3) 

Td = exp(-mo ).        (2.4) 

Here, Td is direct transmittance while Roo, Too and Aoo are diffuse reflectance, diffuse 

transmittance and absorptance of the layer related to incidence of directional flux  with 

direction o. Note that incidence of a diffuse flux Etop leads to relations 

Etop= Etop + Ebot + Ea,       (2.5) 

1 = Ro + To + Ao.        (2.6) 

 

Reflectance Ro, transmittance To and absorptance Ao are related to layer properties for 

diffuse incidence (which are not the same as for direct incidence). Figure 2b illustrates the 

energy balance for diffuse fluxes. 

Radiation fluxes may be interpreted in term of photons; for instance, N (number/m3.m) 

being the spectral density of photons with wavelength  flowing towards direction Ω, then 

directional flux  [W.m-2] in Ω can be assessed by  

 = N c. h.         (2.7) 

Here, c is light speed and  is photon frequency. Let us suppose that directional flux with 

zenith angle Zo impinges on an horizontal surface: the flux per unit area (irradiance, in 

W.m-2) through that surface will be  

E=  cosZo = N c. h µo .       (2.8) 

Note that E/h is the number of photons per unit time per unit surface crossing the 

surface. 
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Diffuse radiation exiting through the base of a plane layer is characterized by a distribution 

density n() in photons per unit volume per steradian (with Ω indicating direction) so that 

associated physical fluxes in the base are 

 

n() c h = F/An.  flux of energy per unit area per steradian = radiance L   

    [W.m-2.ster-1]. This is a directional variable!   (2.9) 

n() c cosZ h = F/A. = L cosZ : flux of energy per unit area (direction Z)  

    per steradian. Referred to direction normal to A   

    [W.m-2.ster-1]. This is refered to flux through  

n() c cosZ h. A= I() = L cosZ A : intensity (flux per steradian) emerging 

    through A [W.ster-1] (4) 

2 n() c cosZ h. d =E flux per unit area: irradiance [W.m-2]   (2.10) 

 

No = N cosZo c  photons incident per unit area per unit time 

2 n() c cosZ d = N  photons exiting per unit area per unit time,  (2.11) 

 

so that 

E/ cosZo = N/No = Probability of diffuse transmittance = P((, , P())|Zo). (2.12) 

 

Eq. (2.12) describes probability of direct photons be transmitted as diffuse radiation (given 

the incidence with zenith angle Zo); similarly, upward exiting photons would allow to 

define P= N/No as the probability of reflection for those incident photons. Note that for 

working with fluxes of photons per unit area, cosZo (incident) and cosZ (exiting) play a 

fundamental role in standardization of the number of photons.  

The probabilities of diffuse transmission Po/reflexion Po and also as de absorption Pao 

for direct incident photons will be identified with transmittance, reflectance and 

absorptance as solutions of the RTE (eq. 1.2) or the two-flux version (1.4): 

 

P((, , P())|Zo)= Po = Too.       (2.12 

P((, , P())|Zo)= Po = Roo. 

Pa((, , P())|Zo) = Pao  = Aoo.  

In the case of incident diffuse radiation, similarity of reasoning is obvious. Probabilities of 

transmission, reflexion, absorption of diffuse photons are paired with (To, Ro, Ao) obtained 

from RTE or two-flux image. Nevertheless, it must be noted that transfer properties of 

diffuse radiation should be influenced by the distribution density of incident photons; this 

can be seen, for instance, in diffuse reflectance 

                                                             
4
 These definitions were early built in the context of astronomy. The current term radiance L was specific 

intensity, that is, normally oriented intensity. French use is luminance. 
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P(top  top) = -2 n() cosZ d / +2 n() cosZ d .    (2.13) 

Clearly, distribution n() depends on the triad (, , P() but also on characteristics of 

downward incident radiation. A frequent hypothesis is that diffuse radiation is isotropic, 

that is, n and n are constant (not depending on ) but n  n. 

Beer's law (eq. 1.1) can be interpreted as survival probability of photons within interval : 

[0,): 

()= N(). c h,  

Prob{no interaction in }= N()/No = exp(- mo ).      (2.14) 

Radiative transfer in a multilayered atmosphere can be thought of as a random walk of 

photons with frequency , in a complicated way:  

 Vertical position is described in terms of optical depth, with photons travelling in 

straight lines with direction 1(Z1,1), Z1= zenith angle and 1= azimuth. 

 They interact randomly in optical paths  m , m= cosZ1, according to exponential 

law (2.14).  

 Then, they are scattered with probability 

 Prob{scattering | interaction}= ,       (2.15)  

 0 1 (single scattering albedo), or absorbed with probability 1-.  

 If scattered, they change direction 12 according to a probability function given 

by a phase function P() which usually is axisymmetric: 

 Prob{' [,+d)}= P() d.      (2.16)  

 But, 1 and 2 are vectors; so,  is a stochastic variable linked to phase function but 

describes a cone of possible scatterings defined by  and an azimuth  which is also 

stochastic, defined by a constant probability density function: 

 Prob{' [, +d)} = d/2.       (2.17) 

Therefore, photons travel along a zig-zag of straight lines until a final situation or "state" of 

no return: absorption within atmosphere or at surface, or exit towards space (itself, another 

absorption state). Each line and scattering direction are defined by four basic probability 

numbers associated to eqs. (2.14-2.17). Successive extraction of random numbers defines 

"history' or "fate" of photons, allowing definition of  probability distributions for final 

photon state. This is the principle of the so-called Monte Carlo method used for solving the 

RTE in complex 3-D structures, for instance cumuli populations (Barker and Davies 1992; 

Kargin and Prigarin 1994; Wen et al. 2008; Pincus and Evans 2009; Mayer 2009). 
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3. Multilayered atmosphere: Building a stochastic model 

 

Consider a stratified atmosphere with N layers defined by triads [, , P()]n, n= 1, 2, ..., N 

as illustrated by figure 3. In such atmosphere, solar radiation impinges on the upper layer 

and is partially transmitted through the N layers, being absorbed and scattered in each one 

and establishing a field (actually a vertical profile) of upward and downward irradiances 

throughout the atmosphere. The fluxes through an interface between layers and those 

absorbed within a given layer are identified as states and numbered within a universe of 

3N+2 possibilities of existence of diffuse radiation. Note that states of absorption are 

numbered 1 (sky), 2 (ground), 3, ..., N+2. States of downward flux at interface between two 

layers are N+3, N+4, ..., (N+2)+N, while states of upward flux at interface between two 

layers are (2N+2)+1, (2N+4), ..., (2N+2)+N= 3N+2.  

Directional flux o impinging the top of atmosphere will be progressively attenuated; for 

the n-th layer, this direct flux will generate diffuse or absorbed radiation as illustrated in 

figure 1(a). For instance, entrance at TOA will populate the fourth layer in figure 3 at states 

6 (absorption), N+6 (diffuse transmission), 3N (diffuse reflexion) with fluxes (related to 

TOA) 

 

 

 Po(6)        = exp(-mo 3) . Aoo(4),              (3.1a) 

Po(N+6)   = exp(-mo 3) . Too(4), 

Po(3N+0) = exp(-mo 3) . Roo(4), 

  

where 3=1+2+3 is total optical depth of the 

three upper layers. Po values can be thought of 

as probabilities of initial diffuse states for direct 

radiation entering at TOA. Further transfer of 

diffuse radiation can be seen as transition 

between states, the first possible jump 

representing fractions of flux or transition 

probabilities  

 

Q(N+67)=         Ao(5),                   (3.1b) 

Q(N+63N-1)=  Ro(5), 

Q(N+6N+7)=   To(5), 

Q(3N  5)=         Ao(3), 

Q(3N 3N+1)=  To(3), 

Q(3NN+5)=     Ro(3), 

 

Figure 3. Transition states for diffuse 

radiation in a multilayered atmosphere. 

 

 

The set of probabilities Po(n), n=1,2,...,3N+2, defines a vector Po of first-state probabilities 

of diffuse radiation, and matrix Q with dimension (3N+2  3N+2) describes the set of 

probabilities of transition between states.  
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Two particular no-return states contribute to define global characteristics: state 1 (H for 

"Heaven") cumulates photons exiting the atmosphere; state 2 (S for "Soil") cumulates 

photons absorbed at the surface. Associated fist-state probabilities for them are  

 

Po(1)= Roo(1);          (3.2) 

Po(2)= exp(-mo N) . (1- Rsoo).        (3.3) 

Here, Rsoo is ground reflectance for direct radiation. After this first situation, states will be 

progressively populated by diffuse transitions  

 

Q(3N+21)= To(1),                     (3.4) 

Q(2N+22)=1-Rso,                                    (3.5) 

Here, rso is surface reflectance for diffuse radiation. Reflectances Rsoo and Rso for direct and 

diffuse radiation have identical values Rs for lambertian surfaces. 

Clearly, if transition probabilities Ro, To, Ao for subsequent transfer jumps of diffuse flux are 

independent of the order of transition (this would be accomplished by isotropic diffuse 

radiance), then we have a definite triad (R,T,A)n for each one of N layers, and the entire 

sequence of transitions between states is a random walk described by a stationary first-order 

Markov chain, with transition matrix Q(3N+2  3N+2) defined by Qij= Q(state i  state j). 

After k transitions, the probability vector for diffuse photon states makes  

Pk = Po Q
k ,  limk Pk =  = Po Q

.     (3.6) 

States n= 1, 2, ..., N+2 are absorbent, thus Q{nm}= n,m. Vector  describes probability 

of final states, being n=0 for n>N+2. The first N+2 (eventually non-null) components 

represent fractions of TOA direct irradiance µo which have been definitely allocated in the 

Earth-atmosphere system, being (a) reflected by the system (state H); (b) retained at soil 

(state S); or (c) absorbed within the atmosphere (states 3 to N+2). If this is the sought 

information, then eq. (13) does provide the solution of RTE in a multilayered atmosphere.  

Estimation of Po and Q allows for a straightforward procedure when comparing with the 

usual method needed in multilayered atmospheres. Following Shettle and Weinman 

(1970), this requires: 1) determination of general solutions for a two-flux method applied to 

each layer; 2) further application of  inner and external boundary conditions (5), in order to 

evaluate upward and downward fluxes at each layer; 3) once defined boundary fluxes, 

assessment of energy balance for each layer.  

The numbering of the set of states as shown in figure 2 allows to define the structure of Q 

and calculation of Q as (Cox and Miller 1965, Ceballos 1988) 

 

  Q = | I1     O1|, Q =  |I1     O1 |,   .   (3.7) 

 |U      V   |  |W    O2 | 

 

                                                             
5  Internal conditions impose continuity at the boundaries of n-th layer: E('=n)n= E('=0)n+1, 

E('=0)n= E('=n-1)n-1. For the upper layer it is E(=0)1= 0, while for the lowest one we have 

E(=n)N = Rsoo exp(-N/µo) + Rso E('=n)N, where N= n n 
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W= (I2 - V)-1 U.         (3.8) 

 

Matrix dimensions are Q(3N+2  3N+2), I1(N+2  N+2), U(2N  N+2), V(2N  2N). 

Matrices O1(2N  2N) and O2(2N  N+2) have null components. Matrix I2 and V have 

same dimension. 

As presented, the model allows to determine absorption profile for incoming direct 

radiation on TOA. Nonetheless, it is important to note that the initial vector Po can be 

freely chosen. For instance, if the purpose is to seek the "fate of photons" produced by 

reflection on ground, it is enough to define Po(n)=0 for all components but Po(2N+3)=1. 

Vector  given by eqs. 13 and 14 yield the fraction of photons that will be absorbed in each 

layer. 

Also, the fraction of diffuse radiation counter-reflected by atmosphere is R*, important for 

assessment of effects of successive reflections atmosphere-ground. In this case, we are 

interested in the transition 2N+32N+2. A single step would have probability 

Q{2N+32N+2}= Ro(N). But if all possibilities of transfer {2N+32N+2} within 

atmosphere are concerned, then the sought probability is found stating Po(2N+3)=1 and 

Po(n2N+3)=0, defining Q with rso=0,  and calculating vector  (eq. 13); we assess R*=  

(2), since any passage by transient state 2N+2 implies in transfer to absorbing state 2. 

Structure of matrix Q remained unchanged. This is an example of how the stochastic point 

of view defined by Figure 3 and eqs. (13) allows a deeper insight on radiative properties of 

a multilayered atmosphere.  More details of the model can be found in Ceballos (1986, 

1989) and Souza et al. (2008). 

 

Comment on limiting matrix  Q 

Due to zeros and low values of some coefficients in Markov matrix Q, some issues could 

be found in numerical inversion required by eq. (3.8). However, this low values (together 

with corresponding high values attributed to other transitions) suggest a steep convergence 

of Qn to Q. Therefore, adopted limit in eq. (3.7) may be, for instance,   P50. This is the 

solution adopted in present paper (included in subroutine function Stoch2F.m) 
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4. Physical parameters of a clean clear-sky atmosphere 

 

The spectral range considered in this paper is : 0.20-0.80 m wavelengths. A clean clear-

sky will be composed by air (oxygen O2 + nitrogen N2 in constant composition),  ozone O3, 

carbon dioxide CO2 and water vapor H2O. In a first approach, we consider 

 absence of O2 absorption lines at 0.63, 0.69 and 0.76 m 

 negligible influence of O2 Herzberg continuum in 0.20-0.24 m interval  

 absence of weak absorption band of H2O at 0.72 m  

 absence of background aerosol 

 constant lambertian (isotropic) ground reflectance 

 standard atmospheric profile of Mc Clatchey et al. (1972) 

 solar spectrum of Gueymard (2004) 

 Eddington approximation for radiative transfer (see Appendix A) 

 An thirteen-layer atmosphere between z=0 and z= 70 km. 

          

4.1. Atmospheric profile.  

Two atmospheric profiles were considered: tropical (TROP) and Mid-Latitude Winter 

(MLW), following Mc Clatchey et al. (1972). From the original 64 levels, fourteen levels 

(thirteen layers) were extracted as shown in Table 1. Columns are: z (km): altitude, ro (g.m-

3): density, p (hPa) pressure; O3 (1E-5 g.m-3) ozone concentration.  Layers are numbered 

from top to bottom: 1 (70-60 km), 2 (60-50 km), ... and so on. Mean concentration for 

ozone layers is assumed as arithmetic mean between altitudes.  

 

 

 

Table 1. Atmospheric profiles (Tropical and Mid-Latitude 

Winter)  following Mc Clatchey et al. (1972)  

  
% ----- 13 layers McClatchey original  

%  --- TROP -----    --- MLW ------ 

%z  ro    p   O3     ro    p     O3 

70  .8  .058 .008    0.6  .047  .01; ... 

60  .8   .40 .21     0.6  .300  .15; ... 

50  1.1  .85  .43    0.89 .682  .43; ... 

45  2.1  1.59 1.3    1.74 1.29  1.3; ... 

40  4.2  3.0 04.1    3.62 2.53  4.1; ... 

35 08.6  6.0 09.2    7.92 5.18  9.2; ... 

30 18.3 12.2 24.0    17.8 11.1 19.0; ... 

25 40.4 25.7 34.5      39 24.3 34.0; ... 

20 95.1 56.5 19.0      87 53.7 45.0; ... 

16  197  111  4.70    162  101 36.0; ... 

10  420  286  3.90    407  257 16.0; ... 

06  650  492  4.30    661  463  6.4; ... 

03  876  715 5.10     923  694  4.9; ... 

00 1167 1013 5.60    1030 1018  6.0]; 

% ------------------------------------- 

 

Figure 4 illustrates density profile of both atmospheres. It is seen that, except for the 

lowest layer and tropopause level (z~ 16 km), they are essentially the same. Figure 

5 shows ozone profiles as given by McClatchey et al. (1972) and an expression 
fitted by Lacis and Hansen (1974, hereafter L&H) for O3 integrated column (from 
ground to height z): 

 
v(z) = exp(z-b)/c, u3(z)= a . (1 + v(0))/[1 +  v(z)],    (4.1) 
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with  a= 0.25 cm, b= 25 km, c=4 km (TROP) and a= 0.4 cm, b= 20 km, c= 5 km 

(MLW). Constant a (cm) refers to total O3 column mass reduced to NTP condition 

(1013 hPa, 273ºK), so that 1 cm NTP = 21.43 g.m-2 (6). 

 

 

 

 

 

Figure 4. Density profiles for atmospheres 
TROP and MLW. 

 Figure 5. Ozone profiles for atmospheres TROP 
and MLW. 

 

 

 

 

 

 

                                                             
6  Ozone column is usually expressed in Dobson Units: 1000 DU = 1 cm O3 in NTP conditions. Coefficients  
a= 250 DU , a= 400 DU fitted by L&H are coherent with profiles illustrated in Wallace and Hobbs (2006), 
Figure 5.16.  

 
 

Figure 6. Air and O3 contents in each one of 13 layers, in mol.m-2. The blue line shows O3 
relative content , in parts per million. 
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4.2. Solar spectrum.   

 

 

Figure 7. Solar spectrum (mean Earth-Sun distance) in 0.2-1.0 m interval 

 

 

Figure 7 shows three spectrums. Thekaekara (1973), Wehrli's 1985 NREL version and 

Gueymard (2004)(7) seem equivalent; however, on the right hand the zoom makes evident 

equivalence of the first two while Gueymard's data show somewhat higher values (about 

30-50 W.m-2.m-2 at 0.45-0.48 m, or about 2%). Spectral resolution of Gueymard 

spectrum is 1 nm= 0.001 m; total irradiance So= 1366 W.m-2. Integral values in our 

intervals of interest are 

 

UV1  0.2-0.3 m   15.5 W.m-2 1.14 % of So (= 1366 W.m-2) 

UV  0.2-0.4   111.2   8.14 

UVVIS  0.2-0.7  644.3  47.2     (4.2) 

UVNIR 0.2-0.8  772.5  56.6  

 

4.3. Rayleigh scattering.  

Spectral dependence of air Rayleigh scattering (ozone not included) for a column of p hPa 

is described by pure scattering (R= 1) with asymmetry factor g= 0 and optical depth  

R = 0.985* 0.0088 -4.15+0.2 (p/1013).       (4.3) 

 

This expression follows Paltridge and Platt (1976); factor 0.985 allows fitting to recent 

calculation by Bodhaine et al. (1999) within 1-2% in 0.3-1 µm interval. 

 

                                                             
7
 At NREL website https://www.nrel.gov/grid/solar-resource/spectra.html, the Wehrli,  Thekaekara and 

Gueymad spectra are available as text files. 
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4.4. Ozone parameterizations.  

Ozone molecular concentration is N3= NA*[O3]/M3 (Avogadro's number NA= 6.02E23 

molecules.mol-1, molar mass M3= 48 g.mol-1). With concentration [O3] in g.m-3, N3 units 

are molecules.m-3. The mean (homogeneous) value of N3 at n-th layer was assumed as the 

arithmetic mean of two consecutive levels in Table 1. The corresponding optical depth is 

3(n,)= N3(n) 3() dz(n).        (4.4) 

 

 

O3 cross section (eq. 20) is described 

by Figure 5. 

Optical depth 3 for a layer is assessed 

according to eq. (1) using 

N3 in molecules.m-3 

z in km 

3 in m2/molecule, 

 

3 = N3 . 1E3 z . 3               (4.5) 

 

 

Figure 5. Ozone cross section in solar spectrum  

 

Molecular cross section 3 was interpolated from Liou (2002, figure 3.5) for three spectral 

bands: Hartley (0.20-0.315 µm), Huggins (0.315-0.35 µm) and Chappuis (0.45-0.79 µm), 

using the expression (coefficients in Table 2): 

 

log10 3() =  c2 
2+c1 +co,      (3 in m2/molecule).     (4.6)  

     

Table 2. Ozone cross section parameterization (units 3 10-20 cm2/molecule) 

band (m) c2 c1 co 

Hartley 0.20-0.25 679.94 -269.8 4.314 
 0.25-0.26 0 0 -20.73 
 0.26-0.315 0 -49.25 -7.98 

Huggins 0.315-0.34 0 -62.37 -3.86 

(no band) 0.34-0.433    

Chappuis 0.433-0.55 0 13.18 -31.52 

 0.55-0.61 0 0 -24.31 

 0.61-0.782 0 -7.85 -19.55 
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4.5. Radiative properties of a layer 

Fundamental parameters can be seen as stochastic events: 

Probability of non-interaction in (0,) = exp(-),    (4.7a) 

Probability of interaction in d = 1- exp(-d)  d,     (4.7b) 

Probability of scattering|interaction= ,     (4.7c) 

Probability of scattering in d | scattering = P()  d.   (4.7d) 

 

Given the homogeneous mixture of K components k=1,2, ..., K, which are defined by triads 

(, ,P())k,  

= k k,         (4.8a) 

Prob{k|interaction} = k/,        (4.8b) 

Prob{scatt|inter}= = k (k/) k,      (4.8c) 

 

Probability of one photon interact in d and be scattered within d: 

d .  . P() d = k d . (dk/d) . k . Pk() d, therefore 

P() d = k k k Pk() d / k k k .     (4.8d) 
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Figure 6. (a). Vertical profile of air and O3 concentration (related to lowest layer), and (b-d) 

spectrums of total optical depth   (eq. 4.7a) and single scattering albedo   (eq. 4.7b) for three 

layers. 

 

Within [0.25-1.0 m] interval, air is not absorbent (air = 1) with Rayleigh scattering 

(optical depth R), while ozone is purely absorbent (3 = 0) with optical depth 3. According 

to eqs. (20), a layer mixing air+O3 will exhibit parameters  

 = R + 3,          (4.9a)  

=  R / (R + 3),        (4.9b)  

P()= PR().         (4.9c)  

 

Figure 6 illustrates some features of atmospheric profile. Subplot (a) shows rapid decrease 

of layers air mass, referred to lowest layer. Based on Table 1 data, it is represented the 

fraction p(n)/p(10) for pressure of n-th layer. For O3, it is used fraction N3(n)/N3(10). It is 

seen that [O3] is rather constant up to z=16 km; the peak concentration at 28 km is only 5 

times the near ground value; however the relative optical depth is 
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f = 3/air = N3. 3/air,          (4.10) 

so that f >>1 for Hartley band interval at all three layers, f >1 for Huggins band and f <1 for 

Chappuis band, and null within other intervals. This implies in >>1 and ~0 for Hartley 

bands within stratosphere as seen in subplot (b), that is, total absorption of TOA solar 

irradiance in despite of >0 in lower layers. Less intense than Hartley's, Huggins band is 

active in stratospheric levels, but weakly contributes to lowering  in the troposphere. The 

same could be said about Chappuis band; however, larger influence on  in the 

stratosphere should be compensated by the lower values of optical depth . 

Concerning scattering, two-flux models use the backscattered fraction rather than function 

P(). For energy coming from direction o, it is defined as the fraction b that is scattered 

into the original hemisphere (upward  , or downward ). Considering descending 

direction o(o,),  = azimuthal angle, with phase function P(), fraction b is  

b(µo) = bo = 2 1/4 P(o,) d.      (4.11) 

This is the backscattered fraction corresponding to direct radiation with zenithal angle Zo 

(note it is independent of azimuth ). For diffuse radiation with local radiance distribution 

L(), a mean backscatterd fraction is defined as 

bmed = 2 b(µ) L() d / 2 L() d.    (4.12)  

A similar average bmed can be defined for backscattering of ascending diffuse radiation. In 

the case of a mixture O2+air, phase function is the Rayleigh scattering function 

PR() = 3/4 (1 + cos2 ) = 1 + P2(*)/2,     (4.13)  

with *= cos(), P2 = 2nd degree Legendre polinomial. For this phase function, any 

distribution L() yields 

bR() = bmed = 1/2.        (4.12)  

Backscattered fractions are currently parameterized with respect to phase function 

assymetry factor 

g= 4P() cos() d.        (4.14)  

For Rayleigh scattering, asymmetry is null: g=0. 

As a matter of fact, the actual parameter triad in two-flux models is {  g}. Transfer 

properties (Roo, Too, Aoo) for direct and (Ro,To,Ao) for diffuse radiation in each layer are 

found solving the couple of eqs. (4), considering null reflectance at the bottom of the layer. 

Appendix A describes solution for the set of layers of Table 1. 
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4.6. Surface parameters 

It was assumed lambertian reflection for all types of surface. Spectral characteristics were 

taken from JPL Laboratory files (Baldridge et al. 2009) and SBDART files based on Reeves 

et al. (1975). Figure 7 illustrates several spectrums for current surfaces. 

 

 

 

Figure 7. Ground reflectance for several surfaces 
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5. Applications to a clean clear-sky atmosphere  

As commented in Section 3, adopted solution of eq. (13) was   P50. Rapid convergence of 

Qk allowed this assumption. In the following, we present six examples of application of 

STOCH2F code and show how a stochastic-based reasoning can highlight understanding 

of solar radiation transfer in the atmosphere. 

 

5.1. Absorption spectra in four layers, clear-sky conditions 

Figures 7 show results of the spectrum of absorption probabilities of direct radiation 

impinging on the top of atmosphere, for Zo= 60º and Rs= 0.5. Four layers are illustrated: 

above peak of O3 concentration (45-50 km), at the peak (25-30 km), upper troposphere/low 

stratosphere (10-16 km) and at the lower layer (0-3 km). Note that below the peak the 

probabilities scale is 10 ten times lower than above it. High Zo and Rs values were chosen in 

order to enhance probabilities of scattering/absorption. Initial and final probabilities 

[Po(layer) and Pfinal = (layer)] are shown in green and black, respectively. We can see that: 

 

  

  

Figure 7. Spectrum of absorption probabilities in UVNIR interval (0.1-0.8 m). Layers 3, 7, 10, 13. 

TROP atmosphere, incidence Zo= 60º, ground reflectance Rs= 0.50. Green (black): initial (final) 

probabilities.  
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 Layer 3 (45-50 km): Hartley and Huggins bands are strongly present with absorption 

probabilities (5)~0.25, while Chappuis band weakly appears. Green and black 

spectrums are identical, making evident that descendent photons no more return if 

passing through the stronger bands of this layer. Of course, upward photons can 

circulate across the layer (but outside stronger bands) as reflected radiation.  

 Layer 7 (25-30 km), with highest O3 concentration: high absortance in Hartley and 

Huggins bands, as well as sensible absorption in Chappuis band. It is seen that 

photons upcoming from lower layers (with impact of high ground reflectance) 

contribute to total absorption (less than 20% of original absorption). 

 Layer 10 (10-16 km): high absorption within upper layers has minimized contribution 

to Hartley band; Huggins is predominant (with 40% of additional contribution of 

upward photons absorption). Chappuis band is always weaker but shows significant 

contribution of upward flux absorption. Final probabilities (10) are ten times smaller 

than above tropopause. The spectrum in layer 13 (0-3 km) is similar to layer 10, but 

probabilities (13) are 2.5 times smaller. 

It is concluded that strong absorption almost eliminates solar radiation at ground level for 

< 0.3 m. Multiple reflection within atmosphere can collaborate to final absorption 

especially in lower layers and Chappuis band (because solar spectrum is higher in VIS than 

in UV interval). These results suggest that atmosphere below 16 km shows weak absorption 

of solar radiation, even in the presence of highly reflecting surfaces.  

What should happen to upward radiation? How able is it of exiting into space (state 1)? The 

stochastic model yields some clear information about that. Figure 8 shows the fate of three 

kind of initial situations of the 13-layered atmosphere: 1) fate of a direct photon on TOA; 2) 

diffuse upward photons beginning at ground level (state 29); 3) diffuse upward photons 

passing through 16 km level (state 33), exiting layer 10. Direct beam at TOA has zenith 

angle Zo= 60º (o= 0.5), TROP atmosphere. 

 

 

Figure 8. Probabilities of scape into space (as planetary reflectance). 

TROP atmosphere,  Zo= 60º. 
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 Photons impinging at TOA: the line in blue describes the spectrum of exit through 

state 1, (1), and cyan dots describe the first impact (direct+diffuse) with Po(surf)= 

Po(2)/(1-Rs). Nearly all radiation in <0.3 m is absent in both cases (since upper 

layers have very low backscattering, and descending photons have been absorbed by 

Hartley/Huggins bands). A steep increase of (2) is seen for >0.3 m, due to 

lowering absorption by Huggins band and strong to backscattering by high Rayleigh 

optical mass; however, for >0.32 the decrease of scattering and the presence of 

Chappuis band can be seen. Increased transmittance of atmosphere (see cyan dots) 

and high soil reflectance also contribute to (1); for higher , it is seen the limiting 

situation of very high transmittance of downward and upward radiation. Thus, 

fraction Rs= 0.5 of inicial irradiance goes back to space. 

 Diffuse photons starting at ground (state 29): the stochastic walk  state 29  state 1 

has initial probability vector Po with dimension 41, with null components except  

Po(29)= 1, and final state probabilities  ~ Po Q
50. Figure 8 shows (1) in magenta, 

considering Rs=.5 (dots) and Rs=0 (line)(8). It is seen that only photons with >0.3 are 

able to escape into space. The effects of Chappuis band can be seen; for high  

(1)1. The increase of (1) due to atmospheric backscattering and multiple 

reflections on ground is not negligible (0.73 to 0.85 at =0.4; 0.85 to 0.89 at =0.55, 

region of solar spectrum maximum). The spectrum is similar to blue line, except that 

this one includes the weighting with probability of attenuation before getting surface.  

 Starting at stratosphere (state 33, at z=16 km), ascending photons are strongly 

absorbed by Hartley band but only partially by Huggins. In the presence of Rs=0.5 

(red dots) and >0.32 m, (1)~0.98 but Chappuis band can reduce the exit to level 

(1)= 0.94. For simulating the effect of stratosphere only, absorbing condition was 

attributed to state 24 (descending radiation at 16 km). So, for transition matrix Q(i,j) 

we stated null reflection and absorption and unit transmittance in layers 10-14, 

together with Rs=0. Therefore, incidence on state 24 yields direct transition to state 2 

and only stratospheric stochastic walk is performed. It is seen that although transition 

291 has a high probability (1), it is about 0.95 in the maximum of solar spectrum 

and even presents the effect of Chappuis band ((1)~0.93). Concerning satellite 

observations (usually in ~0.6 and ~0.8), reduction of information (1) to original 

Po(29) would require a slight correction in VIS channel and none in NIR channel, 

except for anisotropy of exiting radiation: 

        (1) o S = E (measured) = Po(29)  o S . f  T    (5.1) 

Concluding: Hartley band acts as a photon trap. Neither photons incident at TOA arrive to 

ground, nor upward photons from ground or tropopause levels attain the outer space. The 

same  partially happens with Huggins band, although some transmission is allowed at 

>0.3 m. 

 

5.2. Vertical profiles of absorption in clear-sky conditions 

Figures 9 show the profile of energy absorption obtained for different solar zenith angles. 

Only ozone is responsible for absorption. The absorbed irradiances E are probabilities  

weighted with solar spectrum S at top of atmosphere (hereafter TOA): 

                                                             
8 The direct influence of Rs appears in two terms of transition matrix: Q(28,2)= 1-Rs, Q(28,29)= Rs. 
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E(layer, o) = i (i, layer, o). o S(i) i      (5.2) 

F(layer, o) = E/z;          (5.3) 

F is the profile or absorption rate in W.m-2/km in the layer with geometric thickness z.  

Figures show profiles for interval UV(0.2-0.4 m), UVVIS (0.2-0.7 m) and UVNIR (0.2-0.8 

m) and include the final flux F (continuous lines) as well as the contribution of initial 

probability vector Po (dotted lines), say Fo(z). High value of ground reflectance (Rs=0.5) 

enhances the effect of further scattering. It is seen that for vertical incidence absorption rate 

at layers 7-8 (maximal O3 concentration, figure 5) increases by about 50% (from 1.1 to 1.7 

W.m-2.km-1) in UVVIS as well as UVNIR spectral ranges. For slant incidence (Zo75º), 

absorptance is higher but TOA irradiance is lower, leading to lower Fo and F profiles; also, 

higher absorption before arriving at surface (lower Po(2)) leads to lower relative 

contribution of multiple scattering. 

  

 
 

  
Figures 9. Absorption profiles in three spectral intervals: UVVIS, UV and UVNIR 
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Comparing UV and UVNIR diagrams, it is seen that the highest UV value is about 50% or 

less than total absorption, showing that higher absorptance of Hartley/Huggins in UV is 

compensated by higher TOA irradiances in the weaker Chappuis band interval. 

 

 

Figure 10 shows absorption profiles in 
MLW atmosphere. Maximal absorption 
is at lower height than TROP case. Blue 
squares illustrate  profile reported by 
Lacis & Hansen (1974) for Zo= 60º. 

They used O3 profile given by eq. (4.1) 
and US standard atmosphere, applying a 
high quality radiative transfer code 
(doubling-adding).  It is seen that the 
STOCH2F algorithm exceeds LH's by 
about 0.1-0.2 W.m-2.km-1 but depicts the 
same profile. 

The figure includes the pressure fraction 
p(z)/p(z=0), in yellow. Concerning 

heating rates, it can be expected to be 
very low at the troposphere (z<10 km), 

and the maximum be displaced to higher 
altitude, due to decreasing pressure 
(thus, density of enthalpy absorber 
layers).    

Figure 10. Absorption profiles in MLW atmosphere.  

 

Figures 9 make evident that, in spectral interval 0.2-0.8 m, atmosphere can be divided in 

two regions. First, a tropospheric region (z16 km) where O3 absorption is low in clear-sky 

conditions (less than 0.25 W.m-2.km-1, or about 4 W.m-2) and would be even lower in the 

presence of cloud and aerosol. This region contains the current meteorological phenomena 

and their thermodynamic and dynamic energetic balance. 

Secondly, a stratospheric region (16 < z < 70 km) contains a radiative O3 sink which is fed 

not so much by scattering but mainly by the feedback of solar radiation reflected by the 

lower layer and surface (the case of snow or sand would be particularly important). In any 

case, strong Hartley band leads to zero fluxes returning to space or attaining surface (see 

figure 8).  Higgins band allows the presence of fluxes for > 0.3 m. Chappuis band may 

assume not negligible rol in the surface-atmosphere-space radiative balance.   

In what follows, we divide Earth-atmosphere system in four layers: outer space (z>60-70 

km), stratosphere (16<z<60 km), troposphere (z 16 km), ground. 

 

5.3: Energy partition between ground, space and atmosphere 

We assume troposphere as low absorption layer below 16 km (layers 10-13) and 

stratosphere  as z>16 km (layers 1-9). Absorption probabilities in the stratosphere (states 3-

11) and troposphere (states 12-15) will be  

A(strat)= i=3,11 (i),  A(trop)= i=12,15 (i).     (5.4)  

Absorption probability into space (1) corresponds to planetary reflectance Rp. Absorption 

into ground (2) is related to irradiance GL (direct+diffuse) incident on Surface; in UVNIR 

interval, 
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(2) = (1-Rs). GL/(o Suvnir)        (5.5) 

 

Eq. (5.5) expresses the fact that the probability of absorption into ground (2) is the 

probability of photons strike ground, times the probability of not being reflected (1-Rs). Of 

course, this simple relationship over UVNIR interval is valid for constant Rs (independent 

of wavelength). Figures 11 show the four spectral probabilities as well as the spectral 

irradiances for Zo=60º, Rs=0.2. Solar TOA irradiance is also shown, as well as spectral 

bands of channels 1 and 2 of ABI GOES 16 sensor (Schmit et al. 2017). It is evident that 

observation with only one channel  (usually number 2) would fail in describing complexity 

of exiting irradiance (blue line). 

 

 

 

Figure 11. Spectral probabilities and absorbed irradiances in clear-sky conditions, Rs= 0.2, Z0~60º. 
Rectangles in cyan illustrate the spectral interval of ABI channels 1 and 2. Yellowish line: 
Extraterrestrial irradiance. 

 

It is seen that  

 Stratospheric Hartley band eliminates solar spectrum at <0.3 m, leaving no irradiance 

to be allocated at troposphere, space or ground.  

 Troposphere can be considered virtually conservative (with null absorption). 

 UV contribution within 0.3-0.4 m to space and ground irradiances is not negligible. 

 Absorption in stratospheric Chappuis band is low but not negligible; it also shows some 

influence on spectral exit probability but not on associated irradiance. 

 

Figures 12 illustrate the influence of spectrally variable ground reflectance Rs() (shown in 

figure 7). 

 



 

25 
 

 

 

 

 

 

 

 

 

Figure 12. Spectral probabilities and absorbed irradiances in clear-sky conditions, Z0~60º for three 
types of surface. Rectangles in cyan illustrate the spectral interval of ABI channels 1 and 2. 

Yellowish line: Extraterrestrial irradiance. 
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When considering Rs varying with , irradiances of regions r=1, 2, 3, 4 in UVNIR interval 

have been referred to TOA UVNIR: 

DeltaSo = UVNIR Soi i ,        (5.6a) 

E(r, o) = UVNIR (r, o, i) Soi i  / DeltaSo ,      (5.6b) 

G(o) = UVNIR [(4, o, i)/(1-Rsi)] . Soi i  / DeltaSo     (5.6c) 

Figures 13 show results in four types of surface characteristics. 

 

  

  

Figures 13. Exiting and absorbed irradiances (stratosphere, troposphere, ground) and global incident 
on surface, interval UVNIR, related to TOA irradiance. 

 

 

5.4.  RpUVVIS as a function of cosZo for several types of surface.  

It is interesting to note that the set of relative fluxes in figures 13 have similar behavior, in 

despite of the variety of spectral characteristics illustrated in figures 12.  Therefore, some 

simple parameterizations of planetary reflectance Rp could be fitted to STOCH2F results. 

Figure 14 shows behavior of Rp(UVNIR) with solar zenith angle Zo, for six types of surface, 
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TROP atmosphere. It was found a fairly good fit (illustrated by crosses in figure 14, left) 

with the function  

Rp = a / (1 + b o + c o
2)        (5.8) 

 

 

 

 

Figure 14. (left) Behavior of planetary reflectance Rp, UVNIR interval. (right) Comparison 

STOCH2F vs. two other estimates. 

 

 

Table 3. Parameterizations of planetary reflectance Rp (mean value in UVNIR interval). 

Mean Rs is weighted in UVNIR interval with (1) incidence of white spectrum; (2) the first-

impact irradiance on ground, o=1. 

Type of surface Mean 

Rs (1) 

Mean 

Rs (2) 

a b c 

Constant reflectance 0.00 0.00 0.441 5.313 0.052 

 0.20 0.20 0.456 1.879 -0.874 

 0.50 0.50 0.566 0.355 -0.160 

greengrass   0.458 2.877 -1.126 

drygrass   0.511 1.042 -0.494 

sandstone   0.485 1.481 -0.694 

Barker et al. UVVIS 0.20 0.20 0.474 2.027 -0.934 

L&H adapted 0.00 0.00 0.495 6.430 0.0 

 

Table 3 shows coefficients (a b c) obtained for fitting to STOCH2F results. The type of 

surface is characterized by spectrally constant reflectance (three cases), and vegetation or 

sandstone ground (three cases, see figure 7). A mean reflectance for Rs corresponds to a 

value  weighted with irradiance impinging ground: 

Rs(mean) = UVNIR Rs() Goo(,o) d / UVNIR Goo(,o) d.     (5.9) 

For Rs mean values in Table 3, irradiance Goo has been assumed 1) constant (white 

spectrum); 2) first-order impact of solar radiation on ground, be  
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Goo(, o)= [Po(28)+ exp(-/o)] o So.      (5.10) 

 

Figure 14 (right) also shows two comparisons with other model results, namely Barker et 

al. (2003) and Lacis and Hansen (1974).  

Barker et al. (2003) published an intercomparison of 25 1D codes from 19 participants, for 

clear-sky and overcast conditions. Specifications within solar spectrum were: McClatchey 

et al. (1972) tropical atmosphere, 0.05o1, lambertian constant ground albedo Rs= 0.2, 

integrated wavelength interval 0.2-0.7 m (here referred to as UVVIS). Table 3 shows 

coefficients using fitting function given by  eq. (5.8), and figure 14 illustrates the fair 

coherence with STOC2F for o0.1. For o=0.05 STOCH2F underestimates Barker's 

reflectance by 0.15 (~3%). 

Lacis and Hansen (1974) reported the expression (declared accurate within 1%) 

RpLH = 0.28/(1 + 6.43 o).        (5.7) 

Eq. (5.7) corresponds to total solar spectrum, black ground (Rs=0), O3 profile in MLW 

atmosphere, and U.S. Standard Atmosphere (21 layers). Calculation was performed using 

"adding method" code. It is worth to note that: 1) Rayleigh optical thickness is R<0.02 for 

> 0.8 m; 2) a black ground is assumed; therefore, Rp() may be assumed negligible 

outside UVNIR interval. This one accounts for 56.6% of solar constant (eq. 4.2); thus, an 

effective Rp value referred to UVNIR would need a correction factor = 1/0.566= 1.767 so 

that RpLH(adapted) =  RpLH. Figure 14 shows that STOCH2F (Rs=0, o>0.1) closely fits 

LH-based expression. 

It is concluded that STOCH2F estimates and parameterizations of integrated Rp(o, Rs) are 

fairly accurate for o>0.1 (or Zo<84.2º). An important point is that STOCH2F 

parameterization already includes the effects of O3 absorption. For higher zenith angles, the 

plane-parallel hypothesis is no longer valid and two-flux model in STOCH2F should be 

adapted to actually spherical structure of atmosphere. This will be a future task of 

STOCH2F modeling. 

 

Multiple reflections within atmosphere 

Planetary reflectance Rp can be thought of in terms of the following sequence: 1) there is a 

first-time contribution o(1) of random walk (consistent with ground reflectance Rs=0); 2) a 

global radiation Go(o) impinges on this black ground; 3) given the actual value Rs>0, a 

fraction Rs of Go generates diffuse upward photons at state 29; 4) atmosphere has an 

intrinsic transmittance T* and a counter-reflectance R*; 5) multiple reflections on ground 

and successive transmittances create contributions n(1) to a total reflectance (1). The 

corresponding algorithm is 

o(1)= (1, Rs=0); Go= (2, Rs=0);       (5.8a) 

1(1)= Go Rs T*,   

2(1)= (Go Rs). (R* Rs).T* =   1(1) . (R*Rs),  

... 

n(1)= n-1(1) . (R*Rs) = Go Rs T*. (R* Rs)n-1; 

(1) =n n =  o(1) + Go Rs T* / (1 - R* Rs).      (5.8b) 
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Eqs. (5.8) make evident that (R*, T*) are fundamental parameters for describing planetary 

reflectance.  They are found applying STOCH2F code to the multilayered atmosphere, 

with initial vector Po being null except for Po(29)= 1, and Rs= 0 (equivalent to state 

Q(28,29)=0, Q(28,2)=1 in transition matrix).(9). Figure 15 shows the results; it is seen that 

model algorithm of eqs. (5.8) yields the same original spectral Rp(). It is interesting to note 

that 

 

  

Figure 15. Elements of Rp composition, for two zenith angles (o= 0.236 and 1.000). Ground 

reflectance Rs= 0.2 , TROP atmosphere. 

 

 Counter-reflectance R* and transmittance T* for diffuse photons are independent of 

ground reflectance Rs; 

 Exiting Rp() for 0.3 m can be discarded. Ozone does not allow transmission of 

upward diffuse radiance, and somewhat high values of R* are actually produced by 

backscattering processes below the stratosphere. In addition, figure 12 shows that solar 

flux on TOA is not intense enough and associated flux to (1) is negligible.  

 Contribution of UV in :(0.3-0.4) m, together with increasing So values, is not 

negligible. It is mainly due to scattering processes: o(1)~ (1); in VIS spectrum, main 

contribution is due to multiple reflections and o(1)<< (1) at >0.6 m.  

 Satellite observations of clear-sky pixels will be "bluished" in a channel centered at 0.48 

m, while a channel at 0.65 m will observe near real values of Rs. However, for higher 

Zo atmospheric scattering can increase by 25% the real Rs value. 

 

 

 

 

 

 

                                                             
9 R* is the probability of return from  to  at the same level z=0 after a random walk through the entire 
atmosphere, including partial absorption by O3. 
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5.5. A model for clear-sky irradiance at ground level in UVNIR interval 

Figures 16 illustrate different characteristics of clean clear-sky black-ground components of 

solar fluxes within atmosphere. They show that spectral G has a somewhat complex 

behavior, in probability as well as in radiative flux terms. 

 

  

 

Figure 16. Spectral characteristics of main radiative variables Rplan, A (stratosphere), A 

(troposphere), Ground absorption, in terms of probabilities and of fluxes. Zo=60º, Rs=0.  

 

Similarly to algorithm in eqs. (5.8), irradiance G could be evaluated in terms of multiple 

reflections after initial value Go= G(, o, Rs=0), leading to a total global irradiance G(, o, 

Rs)  

 

 G= Go + Go Rs R* + Go (Rs R*)2 + ...  = G(, o, Rs=0) / (1 - R* Rs).   (5.9) 

 

The mean value over UVNIR interval is 

 

G(mean)= UVNIR Go So . (1-R* Rs)-1 d / SoUVNIR.     (5.10) 

 

Even with Rs being constant, R* is a function of  and the integral in (5.10) is not 

straightforward. At least for the case Rs=constant, it could be defined a weighted mean 

value R** of R*, such that 

 

G(mean)= Go(mean) / (1- R** Rs).        (5.11) 

 

It could be expected that dependence of Go on incident angle Zo induce some R** 

variability. STOCH2F code was used to generate spectrally integrated G for a variety of 

values of Zo and Rs. Figure 17 shows that R** has a rather constant value, varying from 

R**~0.134 for Zo<60º to R**~0.119 for Zo>76º. Lacis and Hansen (1974) reported the 

value RLH**= 0.0685 for atmospheric counter-reflectance over the entire solar spectrum and 

averaged over all zenith angles. Following the same argument of nearly null scattering over 
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0.8 m (used for adapting eq. 5.7) the corrected value for UVNIR interval would be   

RLH**=  0.121, fully compatible with our STOCH2F. In addition, linearity in figure 18 

suggests low dependence of R** on Rs even if this one is spectrally variable (like in vegetation 

surfaces). 

 

 

 

 

Figure 17. Evidence of near constant values 
of R** (eq. 5.11) 

 Figure 18. Components of solar radiation 
absorption for Rs=0. 

 

Parameterization of Go(o)  would complete modeling in eq. (5.11). Instead of tempting a 

parameterization of Go itself, it is interesting (and simpler) to consider a radiative balance 

in UVNIR interval (see figure 18): 

 

Rp + Astratos + Atropos + Go/(1- R** Rs) = 1,      (5.12) 

 

and irradiance GL in W.m-2 is (well understood: Rp, A, Go refer to integrated probabilities 

over UVNIR),  

 

GL = o SUVNIR (1 - Rp - A) /(1 - R** Rs).       (5.13) 

 

Similar reasoning was presented in Ceballos (2000), with simplifying hypotheses (constant 

Rs= 0.06-0.08 , A= 0). Reflectance Rp may be parameterized following eq. (5.8) and some 

basic information about surface characteristics. The point is: can be the absorption term A 

disregarded? 

Certainly, tropospheric absorption by O3 can be disregarded, but A(stratos) eventually not, 

especially for o<0.3 (Zo>72º), see figures 13 and 18. A set of STOCH2F results (Rs= 0, 0.1, 

0.2, 0.35, 0.5) was analyzed, finding a fitting function 

Astratos(o, Zo) = f . Ao(o, Rs=0), 

Ao= 0.3204 / (1+20.53 o - 3.36 o
2),  f = 1 + 1.1 Rs o .   (5.14) 
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Eq. (5.13) together with (5.8) for Rp and (5.14) for Astratos yield a model for global insolation 

GL in a clear-sky TROP atmosphere, spectral interval UVNIR:(0.2-0.8 m). 

 

6. Final considerations  

Stochastic point of view provides an useful tool for diagnostic analysis of radiation transfer 

in atmosphere, allowing detection and quantification of the main processes and 

atmospheric parameters having influence.  

In this chapter, a plane-parallel 13-layered atmosphere was considered, in spectral interval 

UVNIR:(0.2-08 m) with typical profiles of McClatchey et al. (1972). Stochastic scheme 

consist of a random walk of diffuse photons from an initial state until an absorbing one 

(within a layer, at ground or at outer space). The process is actually a first-order Markov 

chain, with transition probabilities defined by reflectance, absortance and transmittance for 

diffuse photons, assessed by the solutions of the usual two-flux RTE.  

Clean clear-sky case was considered, where ozone absorption and Rayleigh scattering are 

the acting processes. Thirteen layers and 2-flux Eddington scheme have been enough build 

a stochastic scheme showing main aspects of radiative transfer. Five examples of 

application were developed, leading to a better understanding of some transfer processes.  

Parameterizations of planetary reflectance and atmospheric absorptance are accuratelt 

described. A better description is needed for very low inclination angles.   

The final example developed a model for global radiation in UVNIR interval. It is an 

enhanced version of the GLo simplified version for UVVIS interval (Ceballos 2000), 

currently in use in various applications at Satellite Division DISSM/CGCT/INPE. 

The next chapters will consider more complex situations, as non-Beer law behavior of H2O 

and CO2 absorption, and interaction of solar radiation with aerosol and cloud multilayered 

atmosphere.  

The STOCH2F code is primarily written in MatLab language, compatible with Octave. 

Further adaptation to Python will be accomplished. It is expected to build a standardized 

STOCH code useful for teaching and research of radiative phenomena in Eart-atmosphere 

system. 
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 Appendix A 

 

Two-flux solutions for a layer 

For an homogeneous layer, diffuse irradiances are solutions of a pair of linear differential 

equations 

dE/d = -a1 E + a2 E + a5         (4) 

dE/d = -a3 E + a4 E + a6  . 

These equations arise from different approaches for RTE solutions. Popular examples in 

the literature are the SS-approximation of Coakley and Chylek (1975), the Eddington 

(EDD-) approximation found by Shettle and Weinman (1970), and the two-stream method 

of Liou (2002). The first one assumes isotropic radiances L and L, thus E=  L.  

Eddington approximation considers a first order Legendre polynomial approximation L= a 

+ b P1(), = cosZ, for ascending and for descending radiances. Liou's method comes from 

a complex solution of RTE which describes the radiation field with N ascending plus N 

descending radiances; it considers the approximation N=1. Ceballos (1988) and 

Zdunkowski et al (2007) have analyzed the common aspects of these approximations, the 

relationship between a1-a4 coefficients and the structure of diffuse radiance.  

Section 4.5 defined parameters bmed and mumed. For SS- and EDD- approximations, the 

coefficients a1-a6 in eqs (4) are defined by (Ceballos 1986, 1988: Zdunkowski et al. 2007, ch. 

6) 

a1 = [1 - (1- bmed)]/mumed - Edd   a2=  bmed/mumed - Edd  (A.1) 

a3 =   bmed/mumed - Edd,   a4= [1 - (1- bmed)]/mumed - Edd, 

a5 = 1 - bo,     a6= - bo. 

 

 For the mixture ar+O3 triads are { =R+3,  =R/,  g= 0}. 

 Parameters mumed are averages of µ= cosZ assessed in the same sense that eq (14b). We 

have mumed= 1/2, bmed= 1/2. 

 Edd=0 for SS- and Edd=1/4 for EDD-approximation. 

  

Two-flux solutions for individual N layers 

We adopt approximations SS (Edd=0) or EDD (Edd=.25). Variable Triads has 

components (,,g) in Ncam layers. 

 

1) Direct incidence 

function [Ro, To, Ao, Too] = f2Fdiro(muo, Triads, Edd) 
% calcula parametros de transmissao de rad direta nas Ncam camadas 
% Não aplica correcao Rodgers 

  
[Ncam, Nparam]= size(Triads); mo= 1/muo; 
fator= ones(Ncam,1);  

rodgers=0; 

Mr= 35/sqrt(1224*muo*muo+1); Mo=1;  
fator=M*(rodgers==0) + Mr*(rodgers==1);  
moo= fator*mo;  
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Ro= zeros(1,Ncam); To= zeros(1,Ncam); Ao= zeros(1,Ncam); Too= zeros(1,Ncam); 

taus= Triads(:,1); omegas= Triads(:,2);gs= Triads(:,3); 
for cam=1:Ncam 
    omega= omegas(cam); tau= taus(cam); g= gs(cam);  
    bm= (1-3*g/4)/2; mum=1/2; bo= (1- 3*g*muo/2)/2; 
        a1= (1- omega*(1-bm))/mum - Edd;  a2= omega*bm/mum - Edd; 
        a3= a2; a4= a1; 
        a5= 1- bo; a6= -bo; 
    omegabaixo= .1; taumuitobaixo=.1; 
    tauo= moo*tau; 
    if tauo<=taumuitobaixo; 
        Tdir= 1- tauo; Ab= tauo*(1-omega);  
        T= tauo*omega*(1-bo); R= tauo*omega*bo; 
    end 
    if tauo> taumuitobaixo 
        if omega==1    %atmosfera conservativa: omega==1 
            alfa= a2; 
            R= (alfa*tau -(alfa*muo- bo)*(1- exp(-tauo)))/ (1+alfa*tau); 

            Tdir= exp(-tauo); 
            Ab=0; T= 1- Tdir - R; 
        else 
            % solucao particular (condicao: omega>0) 
            Delta= mo*mo + a2*a2-a1*a1; 
            Bd= mo*omega*(-a5*(mo+a4)+a2*a6)/Delta; 
            Bu= mo*omega*(-a6*(mo-a1)-a5*a3)/Delta; 
            % solucao homogenea 
            gama=  sqrt(a1*a1 - a2*a2); 
            alfa1= (a1-gama)/a2; alfa2= (a1+ gama)/a2; 
            % aplica condicao contorno para solucao completa 
            to= exp(-moo*tau);  
            t= exp(-gama*tau); 
            Delta1= alfa2/t - alfa1*t; 
            A1= (Bu*to- Bd*alfa2/t)/Delta1; 
            A2= (-Bu*to+ Bd*alfa1*t)/Delta1; 

                 
            R= alfa1*A1+ alfa2*A2 + Bu; 
            T= A1*t + A2/t +Bd*to; 
            Tdir= to; Ab= 1- Tdir- T -R;        
         end 
    end 
    To(cam)= T; Ro(cam)= R; Ao(cam)= Ab; Too(cam)= Tdir;  

  
end  %end funcao 

 

 

2) Diffuse incidence 

function [Rd, Td, Ad] = f2Fdif(Triads, Edd) 
%calcula parametros de transmissao de rad difusa numa camada 

   
[Ncam, Nparam]= size(Triads); DDif= 5/3; 
%DDif=1.9;  %Lacis & Hansen 1974, não aplicado 
Rd= zeros(1,Ncam); Td= zeros(1,Ncam); Ad= zeros(1,Ncam); 

taus= Triads(:,1); omegas= Triads(:,2); gs= Triads(:,3); 
for cam=1:Ncam 
    omega= omegas(cam); tau= taus(cam); g= gs(cam); 
    omegabaixo= .05; 
    if omega<omegabaixo 
       T= exp(-DDif*tau); R= 0; Ab= 1-T; 
    end 
    if omega>= omegabaixo 
       bm= (1-3*g/4)/2; mum=1/2; 
 

    if omega==1 
        omega=.9999; 
    end 
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    b= (1 - 3*g/4)/2; mu= .5; 
    a1= (1-omega*(1-b))/mu -Edd; a2= omega*b/mu -Edd;  
    gama= sqrt(a1*a1 - a2*a2); 
    beta1= (a1- gama)/a2; beta2= (a1+ gama)/a2; 
    U= ones(2);  
    U(2,1)= beta1*exp(-gama*tau); U(2,2)= beta2*exp(gama*tau); 
    B= U\[1; 0]; B1= B(1); B2= B(2); 
    R= beta1*B1 + beta2*B2; 
    T= B1*exp(-gama*tau)+ B2*exp(+gama*tau); 
    Ab= 1 - R - T; 
  end      
    Td(cam)= T; Rd(cam)= R; Ad(cam)= Ab; 

  

end  %end do loop N camadas  

  
end  %end funcao 
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Appendix B 
 

Some basic subroutines and the SOCH2F algorithm 

 

 

Applying model STOCH2F 

 
% =================================================== aplica Stoch 
lamda= lamdauvnir; %mu= muP; 
[TriadN, PiN, Poo, Pio, W]= fSpectralStocho(mu, X, lamda, Rs, Edd); 
P= PiN(:,1:end-1,:); Pitrans= squeeze(PiN(:,end,:)); 

%PiN(Nlam,Ncam+3,Nmu) 
Po= Poo(:,1:NPis,:);  %Poo(Nlam,NE,Nmu) 
Rx= W(:,1); Rxe= W(:,2); Tx= W(:,3); Txe= W(:,4); 
Rx1= W(:,5); Rxe1= W(:,6); Tx1= W(:,7); Txe1= W(:,8); 
Rpo= squeeze(Pio(:,1,:)); GLo= squeeze(Pio(:,2,:)); 
% ============================================= fornece PIS e TriadN 

 

Ncam      number of layers 
NA = Ncam+2   number of absorbing states 
NE= 3*Ncam+2   number of states 

 

Input: 
mu  [Nmu, 1]   Nmu values of cos Zo 

X   [Ncam+1, 5]  Atmospheric structure (see Table ...) 

lamda [Nlam, 1]    Nlam values of wavelength 

Rs [Nlam, 1]     ground reflectance  

Edd  [1, 1]    coefficient for SS or EDD approximation 

 

Output: 

TriadN [Ncam, 3]        {  g}  

PiN   [Nlam, Ncam+3, Nmu final probabilities  [Nlam Ncam+3 Nmu] 

Poo   [Nlam, NE, Nmu]    probabilities of first allocation in NE states 

Pio  [Nlam, NA, Nmu]  probabilities of absorption, Rs=0. 

W  [Nlam, 8]   Diffuse reflectance and transmittance of troposphere  

     and stratosphere, black and non-black surface 
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function fPiNcam 

 
function [PiN, Po, Pio,W] = fPiNcam(lamda, muo, TriadN, zbase, Edd, Rs) 
%Recebe perfil da atmosfera + refletancia solo 
%Entrega perfil absorcao + refletancia difusa atmosfera e 
%estratosfera (Ncam+4 colunas) em Nlamda linhas do espectro solar 

     
% ========== probabilidades de estado======================= 
% estado inicial: indicar qual estado como Eo 
% para incidência de rad direta, indicar Eo=ZERO 
% NQ indica a potencia esperada para Q 

  

[Nlam, Ncam, Ntri]= size(TriadN); 
NQ= 50; NE= 3*Ncam+2; NA= Ncam+2; 
Uo= zeros(Nlam,1); 
Pi= zeros(Nlam, NE);  
Rx= Uo; Rxe= Uo; Tx= Uo; Txe= Uo; Pitrans= Uo;  
Rx1= Uo; Rxe1= Uo; Tx1= Uo; Txe1= Uo; 
Po= zeros(Nlam, NE); Pioo= zeros(Nlam,NA); 
X= zeros(Ncam,7, Nlam);  %propriedades de transferencia das camadas 

 

for L=1:Nlam 
    % ====================================================== 
    LL= lamda(L); Rs= Rss(L); 
    tau= squeeze(TriadN(L,:,1));  
    omega= squeeze(TriadN(L,:,2));  
    g= squeeze(TriadN(L,:,3)); 

     
    Eddif=0; 
    [R, T, A]= f2Fdif(tau, omega, g, Eddif); 
    A= A.*(A>0)+ 1e-5*(A<=0); 
    Rd= R; Td= T; Ad= A; 

         
    [R, T, A, Tr]= f2Fdiro(muo, tau, omega, g, Edd, zbase);  
    A= A.*(A>0)+ 1e-5*(A<=0); 
    Ro= R; To= T; Ao= A; Tdir=Tr; 
    if teste==3 
        X(:,:,L)= [Tdir; To; Ro; Ao;  Td; Rd; Ad]'; 
    end 
    % ====================================================== 
    AA= Ad; RR= Rd; TT= Td;  
    AAo= Ao; RRo= Ro; TTo= To; TTdir= Tdir; 

     
    Eo= 0;  %incidencia direta 
    PQL= fStoch2FNcam(Eo,NQ, Rs, Ad,Rd,Td, Ao,Ro,To,Tdir); 
    Pi(L,:)= PQL(end,:);     %NQ produtos, NE estados, lamda 
    Pitrans(L)= sum(Pi(L,Ncam+3:end),2); Po(L,:)= PQL(1,:); 
    % -------------------- incidencia direta solo preto 
    Eo=0; Rso=0; 
    PQL= fStoch2FNcam(Eo,NQ, Rso, Ad,Rd,Td, Ao,Ro,To,Tdir); 
    Pioo(L,:)= PQL(end, 1:NA); 
    %--------------------- contrarref atmosfera 
    Eo=2*Ncam+3; %estado ascendente no solo 
    Rso= Rs; 
    PQL= fStoch2FNcam(Eo,NQ, Rso, Ad,Rd,Td, Ao,Ro,To,Tdir); 
    Rx1(L)= PQL(end,2); %absorcao normal no solo 
    Tx1(L)= PQL(end,1); %transmitancia com reflexao do sol 

    Rso=0; 
    PQL= fStoch2FNcam(Eo,NQ, Rso, Ad,Rd,Td, Ao,Ro,To,Tdir); 
    Rx(L)= PQL(end,2); %contrarrefletancia atmosferica 
    Tx(L)= PQL(end,1); %transmitancia da rad. refletida 
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    % -------------------- contrarref estatosfera 
    camcega= 10; nupcega= NE- (camcega-2); 
    Eoup= nupcega; %estado ascendente em 16km 
    Rso= Rs; 
    PQL= fStoch2FNcam(Eoup,NQ, Rso, Ad,Rd,Td, Ao,Ro,To,Tdir); 
    Rxe1(L)= PQL(end,2); %absorcao normal no solo 
    Txe1(L)= PQL(end,1); %exir incluindo reflexao no solo 
    Rso=0;  
    AAe = AA; RRe=RR; TTe=TT; 
    %RRe(camcega+1)=0; AAe(camcega+1:end)= 0; TTe(camcega+1:end)= 1; 
    RRe(camcega:end)=0; AAe(camcega:end)= 0; TTe(camcega:end)= 1; 
    PQL= fStoch2FNcam(Eoup,NQ, Rso, AAe,RRe,TTe, AAo,RRo,TTo,TTdir); 
    Rxe(L)= PQL(end,2); %contrarrefletancia estratosfera 
    Txe(L)= PQL(end,1); %upward transmittance da estratosfera 
end 
W= [Rx Rxe Tx Txe Rx1 Rxe1 Tx1 Txe1];  
PiN= [Pi(:, 1:Ncam+2), Pitrans]; 

                                 
end %end function 

 

 

function fStoch2FNcam 

 
function P= fStoch2FNcam(Eo,NQ, Rs, A,R,T, Ao,Ro,To,Tdir) 
%Fornece probabilidades de estado finais em 11 camadas 

  
% ESQUEMA11cam = ...  
%  
%     {'        O 1         '; 
%     '--------------------       70 km'; 
%     '        O 3         cam 1'; 
%     '-35--^--------v-14--       50 km'; 
%     '        O 4         cam 2'; 
%     '-34--^--------v-15--       40 km'; 
%     '        O 5         cam 3'; 
%     '-33--^--------v-16--       35 km'; 
%     '                    '; 
%     ' .................. '; 
%     '        O 11        cam 9'; 
%     '-27--^--------v-22--       06 km'; 
%     '        O 12        cam10'; 
%     '-26--^--------v-23--       03 km'; 
%     '        O 13        cam11'; 
%     '_25__^________v_24________ 00 km'; 
%     '/////// O 2 //////////////'} 

  

Ncam= length(A); 
NE= 3*Ncam+2; %NE= numero de estados 
NA= Ncam+2; %numero estados absorventes 
Q= zeros(NE, NE); Q(1:NA,1:NA)= eye(NA); 

  
%incidencia de direta no topo 
%camada 1 
Q(NE, 1)= T(1); Q(NE, 3)= A(1); Q(NE, NA+1)= R(1); 
% 2:Ncam camadas 
for cam=2:Ncam 
    desce=NA+cam-1; sobe= (3*Ncam+2)-(cam-2); 
    Q(desce, sobe)= R(cam); 
    Q(desce, desce+1)= T(cam); 
    Q(desce, cam+2)= A(cam); 
    Q(sobe-1, sobe)= T(cam); 
    Q(sobe-1, desce+1)= R(cam); 
    Q(sobe-1, cam+2)= A(cam); 
end 
%base 
Q(NA+Ncam,2)= 1-Rs; Q(NA+Ncam, NA+Ncam+1)= Rs; 
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Po= zeros(1,NE); 
if Eo==0   %incidencia direta no topo 
  TT=1; 
  for cam=1:Ncam 
    desce= NA+cam; 
    sobe= (cam==1)+ (NE-cam+2)*(cam>1);   
    Po(desce)= TT*To(cam); Po(sobe)= TT*Ro(cam); Po(cam+2)= TT*Ao(cam); 
    TT= TT*Tdir(cam); 
  end 
    Po(2)= TT*(1-Rs); Po(NA+Ncam+1)= TT*Rs; 
end     

  
if Eo>0 
    Po(Eo)=1;   %caminho estocastico comeca difuso em Eo 
end 
% -------------------------- 

  
P= zeros(NQ,NE);  
P(1,:)=Po;   %radiacao original 
for n= 2:NQ 
    P(n,:)= P(n-1,:)*Q;  
end 

  
end   %end function 

 

 

 

function fSpectralStocho 

 
function [TriadN,PiN,Po,Pio,W]= fSpectralStocho(mu, X, lamda, Rs, Edd) 
%recebe perfil atmosfera + lamdas, fornece Pis 
%inclui contrarref atmosferica 
 deltap= X(:,4)- X(:,3);   
 ztopo= X(:,1); zbase= X(:,2); deltaz= ztopo-zbase;  
 ptopo= X(:,3); pbase= X(:,4); 
 MO3= 48; NAvog=6.02e23; 
 NO3= X(:,5)*1e-5*(NAvog/MO3); %molec.m-3 
 NO3= 1e-6*NO3;                %molec.cm-3 

  
 %[O3]= 1.3E-5 em 40-50km segundo mcclatchey 
Ncam= length(deltap); NPis= 2+Ncam; NE= 3*Ncam+2; Nmu= length(mu); 
% ------------------------------------ 
Nlam= length(lamda); 
Uoo= zeros(Nlam, Ncam); taucam= Uoo; omegacam= Uoo; gcam= Uoo; 
TriadN= zeros(Nlam,Ncam, 3); 
for L=1:Nlam         %calcula Triada 
    LL= lamda(L); 
    [tau, omega, g] = fparnc(LL,deltap, deltaz, NO3, zbase); 
    taucam(L,:)= tau; omegacam(L,:)= omega; gcam(L,:)= g; 
    TriadN(L,:,1)= tau; TriadN(L,:,2)= omega; TriadN(L,:,3)= g; 
end 
% ------------ 
PiN= zeros(Nlam,Ncam+3,Nmu); W= zeros(Nlam,2); Po= zeros(Nlam,NE,Nmu); 
for nmu= 1:Nmu 
    muo= mu(nmu);  
    disp(['cosZo = ' num2str(muo)]); 
 [PiN1,Po1, W] = fPiNcam(lamda, muo, TriadN, zbase, Edd, Rs);   
 PiN(:,:,nmu)= PiN1; Po(:,:,nmu)= Po1;  
end     %Ciclo de probabilidades finais 

  
end 
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